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Metrized complexes of curves

Graphs and metric graphs

e A graph G is a connected, Pnite, undirected multigraph
without loop edges.
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Graphs and metric graphs

e A graph G is a connected, Pnite, undirected multigraph
without loop edges.

e A weighted graphis a graphG together with an assignment
of a Olength@(e) > 0 to each edgee ! E(G).
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Metrized complexes of curves

Graphs and metric graphs

e A graph G is a connected, Pnite, undirected multigraph
without loop edges.

e A weighted graphis a graphG together with an assignment
of a Olength@(e) > 0 to each edgee ! E(G).

e A metric graph! is the Ogeometric realizationO of a weighted
graph: it is obtained from a weighted grap@ by identifying
each edge= with a line segment of length(e). In particular,

I is a compact metric space.
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Metrized complexes of curves

Graphs and metric graphs

e A graph G is a connected, Pnite, undirected multigraph
without loop edges.

e A weighted graphis a graphG together with an assignment
of a Olength@(e) > 0 to each edgee ! E(G).

e A metric graph! is the Ogeometric realizationO of a weighted
graph: it is obtained from a weighted grap@ by identifying
each edge= with a line segment of length(e). In particular,

I is a compact metric space.

e A weighted graphG whose geometric realization is ! is called
a modelfor !.
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Metrized complexes of curves

Two models for the same metric graph
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Metrized complexes of curves

Let" be an algebraically closed beld. ndetrized complexC of
" -curvesconsists of the following data:

e A metric graph ! together with a modelG.
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Metrized complexes of curves

Let" be an algebraically closed beld. ndetrized complexC of
" -curvesconsists of the following data:

e A metric graph ! together with a modelG.

e For each vertew of G, a complete, nonsingular, irreducible
curve G, of genusg, " 0 over".
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Metrized complexes of curves

Let" be an algebraically closed beld. ndetrized complexC of
" -curvesconsists of the following data:

e A metric graph ! together with a modelG.

e For each vertew of G, a complete, nonsingular, irreducible
curve G, of genusg, " 0 over".

e For each vertew of G, a bijectionred, from the edges oG
incident to v to a subsetA, of G, (").
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Metrized complexes of curves

Metrized complexes and semistable curves

e Given a metrized compleg of " -curves, there is an
associated semistable curvg over" obtained by gluing the
curves(C, along the pointsred, (e) (one intersection for each
edgee of G) and forgetting the metric structure on !.
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Metrized complexes and semistable curves

e Given a metrized compleg of " -curves, there is an
associated semistable curvg over" obtained by gluing the
curves(C, along the pointsred, (e) (one intersection for each
edgee of G) and forgetting the metric structure on !.

e Conversely, given a semistable curkg over" together with
a positive real number for each node (which we call a Olength
functionO), one obtains an associated metrized complex of
" -curves by lettingG be the dual graph oy, ! the metric
graph associated t& and the given length function(, the
normalization of the irreducible componen§, of Xy
corresponding tov, and A, the preimage inC, of the set of
nodes ofXy belonging toX,.
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Metrized complexes of curves

Metrized complexes and semistable models

Let K be a complete and algebraically closed non-Archimedean
Peld with residue Peld isomorphic tq let X/ K be a smooth,
proper, connected algebraic curve, and ktbe a semistable model
of X over the valuation ringR of K. One obtains a metrized
complexCX associated taX as follows:
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Let K be a complete and algebraically closed non-Archimedean
Peld with residue Peld isomorphic tq let X/ K be a smooth,
proper, connected algebraic curve, and ktbe a semistable model
of X over the valuation ringR of K. One obtains a metrized
complexCX associated taX as follows:

e G is the dual graph of the special Pb#
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Metrized complexes and semistable models

Let K be a complete and algebraically closed non-Archimedean
Peld with residue Peld isomorphic tq let X/ K be a smooth,
proper, connected algebraic curve, and ktbe a semistable model
of X over the valuation ringR of K. One obtains a metrized
complexCX associated taX as follows:

e G is the dual graph of the special Pb#

e The length of an edge: of G is the modulusof the open
annulusred' (x¢), wherex® is the singular point of%
corresponding toe andred : X(K) # X(") is the canonical
reduction map.
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Metrized complexes and semistable models

Let K be a complete and algebraically closed non-Archimedean
Peld with residue Peld isomorphic tq let X/ K be a smooth,
proper, connected algebraic curve, and ktbe a semistable model
of X over the valuation ringR of K. One obtains a metrized
complexCX associated taX as follows:

e G is the dual graph of the special Pb#

e The length of an edge: of G is the modulusof the open
annulusred' (x¢), wherex® is the singular point of%
corresponding toe andred : X(K) # X(") is the canonical
reduction map.

The corresponding metric graph ! =k is called theskeletonof X.
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Metrized complexes of curves

Models and their reductions

? odd ?rime/ .
XIQ © e Z)K-E)FPYE = o

Stable model: Minima) rcj'/lar medgl:
Q ;
Dval 3%1:"\; Dual 3“’7‘\:

SSHIRSS
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Metrized complexes of curves

Divisors on metrized complexes

e The group Div(!) of divisors on !is the free abelian group on
L
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Divisors on metrized complexes

e The group Div(!) of divisors on !is the free abelian group on
L

e The group DivC) of divisors onC is the subgroup of

!
Div() $ $-v (e DiV(GL)

#
consisting of those elemen8 = D; $ |, Dy for which
deg(Dy) = D (v) (the coe"cient of v in D,) for all v in
V(G).
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Divisors on metrized complexes

e The group Div(!) of divisors on !is the free abelian group on
L

e The group DivC) of divisors onC is the subgroup of

!
Div() $ $-v (e DiV(GL)

#
consisting of those elemen8 = D; $ |, Dy for which
deg(Dy) = D (v) (the coe"cient of v in D,) for all v in
V(G).

e The degreeof D is dePned to be the degree 0% .
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Metrized complexes of curves

Divisors on metrized complexes

e The group Div(!) of divisors on !is the free abelian group on
L

e The group DivC) of divisors onC is the subgroup of

!
Div() $ $-v (e DiV(GL)

consisting of those elemen8 = D, $ # v Dv for which
deg(Dy) = D (v) (the coe"cient of v in D,) for all v in
V(G).

e The degreeof D is dePned to be the degree 0% .

e A divisor D is e#tectiveif Dy and all D, are e#ective.
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Metrized complexes of curves

Tropical rational functions and principal divisors

e A (tropical) rational function on ! is a continuous
piecewise-a"ne real-valued functiofi with integer slopes.
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Metrized complexes of curves

Tropical rational functions and principal divisors

e A (tropical) rational function on ! is a continuous
piecewise-a"ne real-valued functiofi with integer slopes.

e The divisorof f is

$
div(f) = ordu(fi) (u),

u"!

where $
ordy(fi) = slpe(f).

e#u
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Metrized complexes of curves

Rational functions and principal divisors on a metrized
complex

e A rational function onC is a collectionf consisting of a
rational functionfi on ! and rational functions#, on G, for
eachv! V. (We do not impose any compatibility conditions
on the rational functionsfi and #,.)
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Metrized complexes of curves

Rational functions and principal divisors on a metrized
complex

e A rational function onC is a collectionf consisting of a
rational functionfi on ! and rational functions#, on G, for
eachv! V. (We do not impose any compatibility conditions
on the rational functionsfi and #,.)

e The divisorof a nonzero ratéonal functiori on Cii |s

div(f) = div(f) $ div(f) + dIVv(f)

\"

where $
divy(fi)=  slpe(fi)(redy(e)).

e#v
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Metrized complexes of curves

Rational functions and principal divisors on a metrized
complex

e A rational function onC is a collectionf consisting of a
rational functionfi on ! and rational functions#, on G, for
eachv! V. (We do not impose any compatibility conditions
on the rational functionsfi and #,.)

e The divisorof a nonzero ratéonal functiori on Cii |s

div(f) = div(f) $ div(f) + dIVv(f)
\"
where $
divy(fi)=  slpe(fi)(redy(e)).
e#v

e Divisors of the formdiv (f) are calledprincipal Two divisors in
Div(C) are calledlinearly equivalenif they di#er by a
principal divisor.
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Outline

@ Riemann-Roch and specialization theorems
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Riemann-Roch and specialization theorems

Berkovich analytic spaces

e From now on, we assume that is algebraically closed.
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Riemann-Roch and specialization theorems

Berkovich analytic spaces

e From now on, we assume that is algebraically closed.

e If V is a smooth proper algebraic variety ovkr, the
Berkovich analytic spacassociated toV is a path-connected,
locally contractible compact Hausdor# spad¢é&” containing
V(K) as a dense subspace.
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Berkovich analytic spaces

e From now on, we assume that is algebraically closed.

e If V is a smooth proper algebraic variety ovkr, the
Berkovich analytic spacassociated toV is a path-connected,
locally contractible compact Hausdor# spad¢é&” containing
V(K) as a dense subspace.

e The constructionV ! V2" s functorial.
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Riemann-Roch and specialization theorems

Berkovich analytic spaces

e From now on, we assume that is algebraically closed.

e If V is a smooth proper algebraic variety ovkr, the
Berkovich analytic spacassociated toV is a path-connected,
locally contractible compact Hausdor# spad¢é&” containing
V(K) as a dense subspace.

e The constructionV ! V2" s functorial.

e For an open a"ne subschemé/ = Spec(A) of V, U?" is the
space of albounded multiplicative seminorman A extending
the given absolute value oK (endowed with theGelfand

topology).
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Riemann-Roch and specialization theorems

One-dimensional analytic spaces

e If X/ K is a curve andX is a semistable model foX, then the
skeleton !y naturally embeds intoX?", and moreover there is
a canonicaldeformation retractior# : Xa" 1 .
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One-dimensional analytic spaces

e If X/ K is a curve andX is a semistable model foX, then the
skeleton !y naturally embeds intoX?", and moreover there is
a canonicaldeformation retractior# : Xa" 1 .

e X2 is canonically homeomorphic to the inverse limit of !
over all semistable models$ for X.
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Riemann-Roch and specialization theorems

Example: Tate elliptic curves

Here is a picture of the analytic space associated to an elliptic
curve with multiplicative reduction:

X /
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Riemann-Roch and specialization theorems

Another picture

¢ ¥
,JT.W.
)
4 /
B ;,‘
A y
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Riemann-Roch and specialization theorems

Specialization of divisors

e There is a canonical retraction magp= #¢ : X3! 1y,
where X2" denotes the Berkovich analytibcation of.
Restricting to X(K) and extending by linearity, we obtain a
specialization mag : Div(X) # Div(! x).
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Specialization of divisors

e There is a canonical retraction magp= #¢ : X3! 1y,
where X2" denotes the Berkovich analytibcation of.
Restricting to X(K) and extending by linearity, we obtain a
specialization mag : Div(X) # Div(! x).

e The map#s can be enhanced in a canonical way to a map
from divisors onX to divisors onCX using the reduction map
red: X(K) # X("), as follows.
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Specialization of divisors

e There is a canonical retraction magp= #¢ : X3! 1y,
where X2" denotes the Berkovich analytibcation of.
Restricting to X(K) and extending by linearity, we obtain a
specialization mag : Div(X) # Div(! x).

e The map#s can be enhanced in a canonical way to a map
from divisors onX to divisors onCX using the reduction map
red: X(K) # X("), as follows.

e For D! Div(X) andv! V(G), let D, be the restriction ofD
to red' (G, (")\A ) and debne

#(P) = #(D) $ s red(D,) ! Div(CX).
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Riemann-Roch and specialization theorems

Intuition

Intuitively speaking, ifP ! X(K) reduces to asmooth pointof X,
the map#<X keeps track of the reduced point

P M= (G(")\A ), while if P reduces to asingular pointof
R then #°X instead keeps track of the retraction @ to the
skeleton of the open annulugd' 1(P) (which is canonically
identiped with the relative interior of the corresponding edge of

1y).
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Riemann-Roch and specialization theorems

Specialization of rational functions

Given a rational functionf on X, one obtains a corresponding
rational functionf = #5X(f) on CX as follows:
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Riemann-Roch and specialization theorems

Specialization of rational functions

Given a rational functionf on X, one obtains a corresponding
rational functionf = #5X(f) on CX as follows:

e fi is the restriction to ! =! x of the piecewise linear function
log|f] on Xxa",
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Riemann-Roch and specialization theorems

Specialization of rational functions

Given a rational functionf on X, one obtains a corresponding
rational functionf = #5X(f) on CX as follows:

e fi is the restriction to ! =! x of the piecewise linear function
log|f] on Xxa",

e For eachv! V(G), f, ! "(G) is the reduction off, to G,
which is debned via an appropriate rescalingfof(The
functions £, are well-debned only up to multiplication by a
nonzero element of .)
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Specialization of rational functions

Given a rational functionf on X, one obtains a corresponding
rational functionf = #5X(f) on CX as follows:

e fi is the restriction to ! =! x of the piecewise linear function
log|f] on Xxa",

e For eachv! V(G), f, ! "(G) is the reduction off, to G,
which is debned via an appropriate rescalingfof(The
functions £, are well-debned only up to multiplication by a
nonzero element of .)

Proposition (Poincare-Lelong relation)

#57(div(F) = div(#E*(f).
In particular, #X (Prin(X)) % Prin(CX).
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Riemann-Roch and specialization theorems

Rank of divisors on metrized complexes

#
e Therank rc of a divisorD = Dy $ |, Dy in Div(C) is the
largest integerk such thatD & E is linearly equivalent to an
e#ective divisor for all e#ective divisoEsof degreek on C.
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Rank of divisors on metrized complexes

#
e Therank rc of a divisorD = Dy $ |, Dy in Div(C) is the
largest integerk such thatD & E is linearly equivalent to an
e#ective divisor for all e#ective divisoEsof degreek on C.

e In particular, rc(D) " 0 i# D is linearly equivalent to an
e#ective divisor, and otherwisg(D) = &1.

Matthew Baker Linear Series on Metrized Complexes



Riemann-Roch and specialization theorems

Rank of divisors on metrized complexes

#

e Therank rc of a divisorD = Dy $ |, Dy in Div(C) is the
largest integerk such thatD & E is linearly equivalent to an
e#ective divisor for all e#ective divisoEsof degreek on C.

e In particular, rc(D) " 0 i# D is linearly equivalent to an
e#ective divisor, and otherwisg(D) = &1.

o LetH={H, : v! V}, whereH, is a"-linear subspace of
the function peld' (C,) for eachv ! V.
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Rank of divisors on metrized complexes

#

e Therank rc of a divisorD = Dy $ |, Dy in Div(C) is the
largest integerk such thatD & E is linearly equivalent to an
e#ective divisor for all e#ective divisoEsof degreek on C.

e In particular, rc(D) " 0 i# D is linearly equivalent to an
e#ective divisor, and otherwisg(D) = &1.

o LetH ={H, : v! V}, whereH, is a"-linear subspace of
the function peld' (C,) for eachv ! V.

e The restricted rankrcy (D) is the largest integerk such that
for any e#ective divisoE of degreek on C, there is a rational
functionf = (fi,(f)vv) with £, ! H, forall v! V such that
D + div(f) " 0.
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Riemann-Roch and specialization theorems

The Specialization Theorem

Let (D) = KO(D) & 1 =dim |D.
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The Specialization Theorem

Let (D) = KO(D) & 1 =dim |D.

Theorem (Specialization Theorem)

@ Forall D! Div(X),

(D) " rex(#7(D)).
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Riemann-Roch and specialization theorems

The Specialization Theorem

Let (D) = KO(D) & 1 =dim |D.

Theorem (Specialization Theorem)

@ Forall D! Div(X),

(D) " rex(#7(D)).

@ Forall D! Div(X),

(D) = rox.n (#X(D)),

where H = { Hy} and Hy is the reduction to C, of
HO(X, L(D)).
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Riemann-Roch and specialization theorems

Riemann-Roch for metrized complexes of curves

#
e DePbne thegenusof C by g(C) = g(!) + v v &, Wheregy
is the genus ofG, .
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Riemann-Roch for metrized complexes of curves

e DePbne thegenusof C by g(C) = g(!) + # v v &, Wheregy
is the genus ofG, .

e A canonical divisoon C, denotedK, is any divisor linearly
equivalent to

$
(degs(v)+2g & 2)(v) $ (Ky + Ay),

v vV

where Ay is the sum of the marked points o8, .
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Riemann-Roch for metrized complexes of curves

#
e DePbne thegenusof C by g(C) = g(!) + v v &, Wheregy
is the genus ofG, .

e A canonical divisoon C, denotedK, is any divisor linearly
equivalent to

$
(degg(v)+2g, & 2)(v) $ (Kv + Ay),
\" v"'V

where Ay is the sum of the marked points o8, .

Theorem (Amini-B.)

Let C be a metrized complex of algebraic curves over " and K a
divisor in the canonical class of C. For any divisor D! Div(C), we
have

re(D) & re(K & D) = deg(D) + 1 & g(C).
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Riemann-Roch and specialization theorems

Remarks

e This result generalizes both the classical Riemann-Roch
theorem for algebraic curves (wheg is a single vertex with
no edges) and the Riemann-Roch theorem for tropical curves
(when all curvesC, have genus 0).
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Riemann-Roch and specialization theorems

Remarks

e This result generalizes both the classical Riemann-Roch
theorem for algebraic curves (wheg is a single vertex with
no edges) and the Riemann-Roch theorem for tropical curves
(when all curvesC, have genus 0).

e The specialization theorenimplies that for any canonical
divisor Kx on X, its specializatior#§™ (Kx ) has degree 2 & 2
and rank at leastg & 1 (whereg = g(X) = g(CX)). By
Riemann-Roch for metrized complexatfollows that
#5X(Kx) is a canonical divisor o€X.
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© Limit linear series
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Limit linear series

Motivation

Eisenbud and Harris:

OOne of the most potent methods in the theory of (complex
projective algebraic) curves and their linear systems since the work
of Castelnuovo has been degeneration to singular curves... Most
problems of interest about curves are, or can be, formulated in
terms of (families of) linear series. Thus, in order to use
degenerations to reducible curves for studying smooth curves, it is
necessary to understand what happens to linear series in the course
of such a degeneration, and in particular, to understand what
structure on a reducible curve plays the part of a linear series.O
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Limit linear series

Motivation

e Eisenbud and Harris were able to settle a number of
longstanding open problems with their theory of limit linear
series, and the theory has undergone numerous developments
and improvements in the last 25 years. However, the theory of
limit linear series only applies, for the most part, to a rather
restricted class of reducible curves, namely thosemhpact
type (i.e., nodal curves whose dual graph is a tree).
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Limit linear series

Motivation

e Eisenbud and Harris were able to settle a number of
longstanding open problems with their theory of limit linear
series, and the theory has undergone numerous developments
and improvements in the last 25 years. However, the theory of
limit linear series only applies, for the most part, to a rather
restricted class of reducible curves, namely thosemhpact
type (i.e., nodal curves whose dual graph is a tree).

e Our previous theory of specialization of linear series from
curves to graphs is more or less orthogonal to the
Eisenbud-Harris theory, in that it works best for special Pbers
which aretotally degeneratg(i.e., the dual graph has genus
equal to the genus of thX). Specializing linear series to the
dual graph provides no interesting information when the
special Pber is of compact type.
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Limit linear series

Motivation

Both the Eisenbud-Harris theory and specialization from curves to
graphs lead to simple proofs of the celebrated Brill-Noether
theorem of Gri"ths-Harris.
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Limit linear series

Limit linear series

e A proper semistable curvy over" is of compact typeif its
dual graphG has genus zero (i.eG is a tree).
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Limit linear series

e A proper semistable curvy over" is of compact typeif its
dual graphG has genus zero (i.eG is a tree).

e A g L onasmooth curveX is a degreed line bundleL on X
together with an ¢ + 1)-dimensional subspace dff°(X,L).
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Limit linear series

e A proper semistable curvy over" is of compact typeif its
dual graphG has genus zero (i.eG is a tree).

e A g L onasmooth curveX is a degreed line bundleL on X
together with an ¢ + 1)-dimensional subspace dff°(X,L).

e For (proper semistable) curv&y of compact type, Eisenbud
and Harris debne &mit g} to be the data of ag L, on G,
for each vertexv ! V such that if two component<, and G,
of Xp meet at a nodep, then forany 0' ' r,

a*(p)+ ati(p) " d,

Whel‘eail‘(p) denotes the/" term in the vanishing sequence of
a linear seried at p.
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Limit linear series

Limit linear series and metrized complexes

e A gj on a metrized compleX is an equivalence class of pairs
(D,H) with rcy (D) = randH = {H,} with H, an
(r + 1)-dimensional subspace df(C,) for all v.
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Limit linear series and metrized complexes

e A gj on a metrized compleX is an equivalence class of pairs
(D,H) with rcy (D) = randH = {H,} with H, an
(r + 1)-dimensional subspace df(C,) for all v.

e The equivalence relation i), H) ( (D%*H% i# there is a
nonzero rational functiorf = (#,{#}) on C such that
D¥= D + div(f) and H}*= H, af, for all v.
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Limit linear series and metrized complexes

e A gj on a metrized compleX is an equivalence class of pairs
(D,H) with rcy (D) = randH = {H,} with H, an
(r + 1)-dimensional subspace df(C,) for all v.

e The equivalence relation i, H) ( (D%H% i# there is a

nonzero rational functiorf = (#,{#}) on C such that
D¥= D + div(f) and H}*= H, af, for all v.

Theorem (Amini-B.)

If Xo is of compact type, there is a bijection between limit g}'s in
the sense of Eisenbud-Harris and g}j’s on the metrized complex
CXo associated to any regular smoothing X of Xp.
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Limit linear series

e Our theorem suggests a way to generalize the Eisenbud-Harris
theory to semistable curves which are not necessarily of
compact type: a limitgg on an arbitrary semistable curviy
is agy on the associated metrized complex.
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Limit linear series

e Our theorem suggests a way to generalize the Eisenbud-Harris
theory to semistable curves which are not necessarily of
compact type: a limitgg on an arbitrary semistable curviy
is agy on the associated metrized complex.

e As a partial justibcation for this debnition, it follows from our
specialization equality that iX is a semistable model for a
smooth curveX, then the specialization t€CX of a gj on X
is agy on CX.
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Limit linear series

Riemann and Cli'ord inequalities

o g Os on metrized complexes satisfy analogues of the classical
theorems ofRiemannand Cli#ord. The latter says that ifD
andK & D both have nonnegative rank, then
r(D) "' degD)/2.
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Limit linear series

Riemann and Cli'ord inequalities

o g Os on metrized complexes satisfy analogues of the classical
theorems ofRiemannand Cli#ord. The latter says that ifD
andK & D both have nonnegative rank, then
r(D) ' degD)/2.

e For curves of compact type, the corresponding result for limit
ggés was proved by Eisenbud and Harris.
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Limit linear series

Riemann and Cli'ord inequalities

o g Os on metrized complexes satisfy analogues of the classical
theorems ofRiemannand Cli#ord. The latter says that ifD
andK & D both have nonnegative rank, then
r(D) ' degD)/2.

e For curves of compact type, the corresponding result for limit
ggés was proved by Eisenbud and Harris.

e The pointis thatrcy (D) ' re(D) forall D! Div(C) and
therefore any upper bounds a(D) which follow from
Riemann-Roch imply corresponding upper bounds on the
restricted rankrcn (D).
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Limit linear series

The theorem of Katz and Zureick-Brown

Using a bound which is a special case of our Cli#ord inequality for
linear series on metrized complexes, Katz and Zureick-Brown have
recently proved the following result, answering a question of Stoll:
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Limit linear series

The theorem of Katz and Zureick-Brown

Using a bound which is a special case of our Cli#ord inequality for
linear series on metrized complexes, Katz and Zureick-Brown have
recently proved the following result, answering a question of Stoll:

Theorem

Let X be a smooth projective geometrically irreducible curve of

genus g " 2 over Q and assume that the Mordell-Weil rank r of
the Jacobian of X is less than g. Fix a prime number p > 2r + 2
and let X be a proper (not necessarily semistable) regular model
for X over Zp. Then

#X(Q)' RM(Fp)+2r.
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Outline

@ Harmonic morphisms of metrized complexes
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Harmonic morphisms of metrized complexes

Harmonic morphisms of metric graphs

A continuous surjective ma@ : ! # ! “between metric graphs
with modelsG, G%is called aharmonic morphisn{resp. bnite
harmonic morphism) if:

Matthew Baker Linear Series on Metrized Complexes



Harmonic morphisms of metrized complexes

Harmonic morphisms of metric graphs

A continuous surjective ma@ : ! # ! “between metric graphs
with modelsG, G%is called aharmonic morphisn{resp. bnite
harmonic morphism) if:

e $ takes vertices to vertices and edges to either edges or
vertices (resp.edges.
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Harmonic morphisms of metrized complexes

Harmonic morphisms of metric graphs

A continuous surjective ma@ : ! # ! “between metric graphs
with modelsG, G%is called aharmonic morphisn{resp. bnite
harmonic morphism) if:
e $ takes vertices to vertices and edges to either edges or
vertices (resp.edges.
e $ is a"ne with integer sloped, along each edge of G.
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Harmonic morphisms of metrized complexes

Harmonic morphisms of metric graphs

A continuous surjective ma@ : ! # ! “between metric graphs
with modelsG, G%is called aharmonic morphisn{resp. bnite
harmonic morphism) if:
e $ takes vertices to vertices and edges to either edges or
vertices (resp.edges.
e $ is a"ne with integer sloped, along each edge of G.
e For every vertex of G and every edge”of G*incident to
v¥= $(v), the number

$
dy($) == de($)

e&'e' e#tv

is independent og”
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Harmonic morphisms of metrized complexes

Harmonic morphisms of metric graphs

A continuous surjective ma@ : ! # ! “between metric graphs
with modelsG, G%is called aharmonic morphisn{resp. bnite
harmonic morphism) if:
e $ takes vertices to vertices and edges to either edges or
vertices (resp.edges.
e $ is a"ne with integer sloped, along each edge of G.
e For every vertex of G and every edge”of G*incident to
v¥= $(v), the number

$
dv($) = de($)
e&' e e#tv
is independent og”

The degre&of a harmonic morphism is the quantity
deg®) = g dv($), which is independent of %



Harmonic morphisms of metrized complexes

A degree 3 harmonic morphism
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Harmonic morphisms of metrized complexes

Harmonic morphisms of metrized complexes

A Pnite harmonic morphisnof metrized complexes of curves is a
Pnite harmonic morphisn$ : ! # ! *of metric graphs takingG to
G” and for every vertex of G a bnite morphism of curves

$v: G # G (), satisfying the following compatibility conditions:
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Harmonic morphisms of metrized complexes

Harmonic morphisms of metrized complexes

A Pnite harmonic morphisnof metrized complexes of curves is a

Pnite harmonic morphisn$ : ! # ! *of metric graphs takingG to

G” and for every vertex of G a bnite morphism of curves

$v: G # G (), satisfying the following compatibility conditions:
e For everyv ! V(G) and every edge ) v,

$y(redy(e)) = red ()($(e)) and the ramibcation degree of
$y at red, (e) equalsds($).
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Harmonic morphisms of metrized complexes

Harmonic morphisms of metrized complexes

A Pnite harmonic morphisnof metrized complexes of curves is a
Pnite harmonic morphisn$ : ! # ! *of metric graphs takingG to
G” and for every vertex of G a bnite morphism of curves
$v: G # G (), satisfying the following compatibility conditions:
e For everyv ! V(G) and every edge ) v,
$y(redy(e)) = red ()($(e)) and the ramibcation degree of
$y at red, (e) equalsds($).
e For everyv ! V(G), every edge” $(v), and every point
x 1 G, with $,(x) = red, (V)(e"’j’, there is an edge= ) v such
that red,(e) = x.
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Harmonic morphisms of metrized complexes

Harmonic morphisms of metrized complexes

A Pnite harmonic morphisnof metrized complexes of curves is a
Pnite harmonic morphisn$ : ! # ! *of metric graphs takingG to
G” and for every vertex of G a bnite morphism of curves

$v: G # G (), satisfying the following compatibility conditions:

e For everyv ! V(G) and every edge ) v,
$y(redy(e)) = red ()($(e)) and the ramibcation degree of
$y at red, (e) equalsds($).

e For everyv ! V(G), every edgee”) $(v), and every point
x 1 G, with $,(x) = red, (V)(e"’j’, there is an edge= ) v such
that red,(e) = x.

e For everyv ! V(G), dy($) = deg($y).
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Harmonic morphisms of metrized complexes

Morphisms of curves and morphisms of metrized comg;

If f:X# X%is a bnite morphism of smooth, proper, connected
curves overk, then 7 always extends to a bPnite morphism of
semistable models (Liu-Lorenzini), and this induces a map

$: CX# CX%of metrized complexes.
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Harmonic morphisms of metrized complexes

Morphisms of curves and morphisms of metrized comg;

If f:X# X%is a bnite morphism of smooth, proper, connected
curves overk, then 7 always extends to a bPnite morphism of
semistable models (Liu-Lorenzini), and this induces a map

$: CX# CX%of metrized complexes.

The map $ : CX# CX%is a finite harmonic morphism of metrized
complexes of curves.
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Harmonic morphisms of metrized complexes

Lifting harmonic morphisms of metrized complexes

Theorem (Amini-B.-Brugalle-Rabino#)

Assume that the residue field " of K has characteristic zero. Let
X%be a smooth, proper, connected curve over K, let X?PR be a
semistable model for X, and let C*be the metrized complex
associated to X? Let $ : C# C”be a finite harmonic morphism of
metrized complexes of curves over " . Then there exists a curve X
and a finite morphism f : X # X%of semistable models for X and
X% respectively, inducing $.
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Harmonic morphisms of metrized complexes

Lifting harmonic morphisms of metrized complexes

Theorem (Amini-B.-Brugalle-Rabino#)

Assume that the residue field " of K has characteristic zero. Let
X%be a smooth, proper, connected curve over K, let X?PR be a
semistable model for X, and let C*be the metrized complex
associated to X? Let $ : C# C”be a finite harmonic morphism of
metrized complexes of curves over " . Then there exists a curve X
and a finite morphism f : X # X%of semistable models for X and
X% respectively, inducing $.

A similar result holds whef has positive characteristic, provide
we assume that all morphisms of curves &enely ramibed
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