Math 2552 - Differential Equations
Georgia Institute of Technology, Spring 2019

Worksheet 11 (Feb 18, ch4 intro)
Intro to second order equations

Note: As chapter 4 has not yet been covered in lecture, this is merely an intro to get you thinking about the topic.

1. Solve the second order ODE by first transforming into a system of first order ODE:
a. $6 y^{\prime \prime}-y^{\prime}-y=0$
b. $4 y^{\prime \prime}-9 y=0$
c. $y^{\prime \prime}+6 y^{\prime}+16 y=0$
d. $y^{\prime \prime}+3 y^{\prime}+2 y=0, \quad y(0)=2, \quad y^{\prime}(0)=-1$
2. (optional) Introduction to the theory of second order ODE:
a. (review) What can you say about the existence and uniqueness of a solution to the following IVP?

$$
\frac{d \mathbf{x}}{d t}=\left(\begin{array}{ll}
p_{11}(t) & p_{12}(t) \\
p_{21}(t) & p_{22}(t)
\end{array}\right) \mathbf{x}+\binom{g_{1}(t)}{g_{2}(t)}, \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}
$$

b. Write the following IVP as a system of first order equations:

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{1}
$$

c. Based on your answers for a and b, what do you think is the equivalent existence and uniqueness theorem for the equation in part b?
d. After transforming into a system of first order ODE, what is the characteristic equation for $a y^{\prime \prime}+b y^{\prime}+c y=0$? Do the roots (i.e., the eigenvalues) change if you multiply the characteristic equation by a ?
e. Suppose you have the equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ as in part d, and that the eigenvalues are distinct, real valued. Find a good choice of eigenvectors, and provide a general solution.

