1. Determine the longest interval in which the given IVP is certain to have a unique, twice differentiable solution:
a. $t(t-4) y^{\prime \prime}+3 t y^{\prime}+4 y=2, \quad y(3)=0, y^{\prime}(3)=-1$
b. $(\ln t) y^{\prime \prime}+\frac{t}{t^{2}-4} y^{\prime}+y=0, \quad y(1)=4, y^{\prime}(1)=1$
c. $y^{\prime \prime}+t^{2} y^{\prime}+\tan (t) y=2, \quad y(0)=1, \quad y^{\prime}(0)=-1$
2. Do the functions $y_{1}(t)$ and $y_{2}(t)$ constitute a fundamental set of solutions for the given problem?
a. $y^{\prime \prime}-2 y^{\prime}+y=0 ; \quad y_{1}(t)=e^{t}, y_{2}(t)=t e^{t}$
b. $(1-t \cot t) y^{\prime \prime}-t y^{\prime}+y=0, \quad 0<t<\pi ; \quad y_{1}(t)=t, y_{2}(t)=\sin t$
