1. Determine the longest interval in which the given IVP is certain to have a unique, twice differentiable solution:

a.
$$t(t-4)y'' + 3ty' + 4y = 2$$
, $y(3) = 0$, $y'(3) = -1$
b. $(\ln t)y'' + \frac{t}{t^2 - 4}y' + y = 0$, $y(1) = 4$, $y'(1) = 1$
c. $y'' + t^2y' + \tan(t)y = 2$, $y(0) = 1$, $y'(0) = -1$

2. Do the functions $y_1(t)$ and $y_2(t)$ constitute a fundamental set of solutions for the given problem?

a.
$$y'' - 2y' + y = 0;$$
 $y_1(t) = e^t, y_2(t) = te^t$
b. $(1 - t \cot t)y'' - ty' + y = 0,$ $0 < t < \pi;$ $y_1(t) = t, y_2(t) = \sin t$