1. Solve the IVP and sketch the solution in the ty-plane:
a. $y^{\prime \prime}+2 y^{\prime}+2 y=0, \quad y(\pi / 4)=2, \quad y^{\prime}(\pi / 4)=-2$
b. $y^{\prime \prime}+3 y^{\prime}=0, \quad y(0)=-2, \quad y^{\prime}(0)=3$
c. $y^{\prime \prime}+8 y^{\prime}-9 y=0, \quad y(1)=1, y^{\prime}(1)=0$
2. A mass weighing 3 lb stretches a spring 3 in . If the mass is pushed upward, contracting the spring a distance of 1 in ., and then set in motion with a downward velocity of 2 $\mathrm{ft} / \mathrm{sec}$, and if there is no damping, find the position y of the mass at any time t. Sketch the solution in the $t y$-plane.
3. A mass weighing 8 lb stretches a spring 1.5 in . The mass is also attached to a damper with a coefficient γ. Determine the value of γ for which the system is critically damped.
