1. Solve the IVP and sketch the solution in the *ty*-plane:

a.
$$y'' + 2y' + 2y = 0$$
, $y(\pi/4) = 2$, $y'(\pi/4) = -2$
b. $y'' + 3y' = 0$, $y(0) = -2$, $y'(0) = 3$
c. $y'' + 8y' - 9y = 0$, $y(1) = 1$, $y'(1) = 0$

- 2. A mass weighing 3 lb stretches a spring 3 in. If the mass is pushed upward, contracting the spring a distance of 1 in., and then set in motion with a downward velocity of 2 ft/sec, and if there is no damping, find the position y of the mass at any time t. Sketch the solution in the ty-plane.
- **3.** A mass weighing 8 lb stretches a spring 1.5 in. The mass is also attached to a damper with a coefficient γ . Determine the value of γ for which the system is critically damped.