1. Consider a population p of bacteria that grows at a rate proportional to the current population, that is, $\frac{d p}{d t}=r p$.
a. Find the rate constant r if the population doubles in 12 days.
b. If $p=200$ initially (when $t=0$), what is the population when $t=18$ days?
2. Some chemical reactions require heat energy to occur. Suppose you are designing an experiment that requires a solution to remain above $60^{\circ} \mathrm{C}$ for its duration and that your lab remains at a constant $20^{\circ} \mathrm{C}$. Assume the transmission coefficient is $k=2$ hours $^{-1}$.
a. Write a differential equation describing this situation using Newton's law of cooling.
b. What initial temperature is required if the experiment takes 30 minutes?
3. (optional) Radioactive materials disintegrate at a rate proportional to the amount present. If $Q(t)$ represents the amount present at time t, then $\frac{d Q}{d t}=-r Q$ is the equation describing the decay where $r>0$ is the decay rate.
a. 100 mg of the radioactive isotope thorium- 234 decays to 82.04 mg in one week. Determine the decay rate r.
b. Find an expression for the amount of thorium-234 present at any time t given that there is 100 mg at time $t=0$.
c. Calculate the half-life of of thorium-234.
