For problems 1-3,
a. Find all critical points.
b. For each critical point, find the corresponding linear system.
c. Find eigenvalues of each linear system.
d. Draw a phase portrait for the nonlinear system. Note: It may be necessary to go beyond the work in part \mathbf{c} to do this accurately.

1. $d x / d t=x-y^{2}, \quad d y / d t=x-2 y+x^{2}$
2. $d x / d t=3-x y, \quad d y / d t=x-3 y^{3}$
3. $d x / d t=4-y^{2}, \quad d y / d t=(1.5+x)(y-x)$
4. (optional) Consider the system: $\left.d x / d t=-\sqrt{x^{2}+y^{2}}\right), \quad d y / d t=\sqrt{x^{2}+y^{2}}$. There is a single critical point at the origin. Instead of analyzing this problem as above, try to reason about what should happen in this system.
a. What does the quantity $\sqrt{x^{2}+y^{2}}$ represent?
b. If you were to draw a direction field, what would be the direction of any vector? What is the magnitude?
c. Draw the phase portrait.
