1. What is the largest interval on which a solution to the IVP is guaranteed to exist?
a. $(\sin t) y^{\prime}-t^{2} y=\frac{t}{t^{2}-16}, \quad y(1)=2 \pi$
b. $(\sin t) y^{\prime}-t^{2} y=\frac{t}{t^{2}-16}, \quad y(3.5)=-1$
2. a. Verify that both $y_{1}(t)=1-t$ and $y_{2}(t)=-t^{2} / 4$ are solutions to the IVP:

$$
y^{\prime}=\frac{-t+\left(t^{2}+4 y\right)^{1 / 2}}{2}, \quad y(2)=-1
$$

b. Explain why the existence of two solutions through the same point does not contradict the uniqueness theorem.
3. Find and classify all equilibrium points, draw a phase line, and sketch solutions in the $y t$-plane.
a. $y^{\prime}=y^{2}(1-y)$
b. $y^{\prime}=y \ln \left(y^{2}+\frac{3}{4}\right)$

