For each of the following systems, find the real valued general solution, draw a phase portrait, and classify the fixed point. If an initial value is given, also solve the initial value problem.

1. $\mathbf{x}^{\prime}=\left(\begin{array}{cc}1 & 2 \\ -5 & 1\end{array}\right) \mathbf{x}$
2. $\mathbf{x}^{\prime}=\left(\begin{array}{ll}2 & -5 \\ 1 & -2\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\binom{3}{2}$
3. $\mathrm{x}^{\prime}=\left(\begin{array}{ccc}-1 & -2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1\end{array}\right) \mathbf{x} \quad$ (note: Only find the real valued general solution)
4. $\mathrm{x}^{\prime}=\left(\begin{array}{ccc}3 & 0 & -2 \\ -1 & 1 & 1 \\ 4 & 0 & -1\end{array}\right) \mathbf{x} \quad$ (note: Only find the real valued general solution)
5. (if there is time) Discuss what a typical trajectory might look like in number 3.
