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Russell Newton asked a question about the significance of conjugation with re-
spect to diagonalizable linear functions (operators) L : V → V . I think I offered
a fairly solid explanation from the point of view of the matrix framework for linear
transformations on Rn or Cn, but my attempt to adapt that discussion to the more
abstract and general context of L : V → V was somewhat lacking, not to mention
confusing. In the end, I am not able to see any particular compelling discussion that
strictly parallels the discussion for matrices which I will outline below (as a review).
From a somewhat different perspective, however, I think there is something interest-
ing to say about conjugation for linear functions, so I will try to present that in a
second section.

1 The Matrix Framework

As may be familiar to many of you, if you start with an n× n matrix A = (aij) with
either real or complex entries, then one can view the matrix as corresponding to a
linear function L : Rn → Rn (in the former case) or L : Cn → Cn (in either case)
given by matrix multiplication

Lx = Ax,

and the diagonalizability of the matrix A is essentially equivalent to what we have
introduced as the definition of the digaonalizability of the function L, namely, the
existence of a basis {v1,v2, . . . ,vn} of eigenvectors. In this setting, the basic objective
is to find the diagonal matrix corresponding to L and thus related to A. The nature
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of the relation is nicely illustrated by a matrix/mapping diagram:

A

V −→ V

C ↓ ↓ C

V −→ V

D

Each of the labels on the arrows in this diagram represents a matrix and accordingly
a basis is required to make the initial connection between A and L as well as between
each of the matrices C and D and some linear function. The usual interpretation is
that the standard unit basis vectors are chosen as the basis for each of the spaces V
in the diagram, but D is the matrix of the linear function L with respect to the basis
of eigenvectors, while A is the matrix of L with respect to the standard unit basis
vectors. This kind of “thinking of the vector space V with respect to, or attached
to, a particular basis is not natural to and does not lend itself to the consideration of
linear functions the linear mapping diagram considered below, but it works well in
this context of matrices. More precisely, we take the matrix C−1 as the matrix with
columns v1,v2, . . . ,vj which may be viewed as corresponding to the linear function
assigning the standard unit basis vector ej to the vector vj (with respect to the
standard unit basis {e1, e2, . . . , en}. Then the matrix D which we “read off” from
the matrix/mapping diagram is the matrix conjugation

D = CAC−1.

Assuming each of the basis vectors vj is an eigenvector of L with Lvj = λjvj, we can
compute the matrix D as follows:

Dej = CAC−1ej = CAvj = C(λjvj) = λjCvj = λjej .

Thus, D is the diagonal matrix with the eigenvalue λj of L in the j-th diagonal entry.
This is pretty straightforward, and from the mapping point of view, we can simply
say that the matrix of L with respect to the basis {v1,v2, . . . ,vn} is the diagonal
matrix D.

Exercise 1 Given a diagonalizable matrix A corresponding to L : Rn → Rn, or more
generally a diagonalizable linear function L : V → V defined on an n-dimensional
vector space V , show there can be no more than n distinct eigenvalues, and denoting
the eigenspaces corresponding to distinct eigenvalues λ1, λ2, . . . , λm by

Ej = {v ∈ R
n : Av = λjv} for j = 1, 2, . . . , m}
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there holds
m∑

j=1

dimEj = n.

2 Linear Mapping Framework

We recall that we can denote by L(V → V ) the finite dimensional vector space of
linear functions defined on an n-dimensional vector space V . There is an operation of
composition on this vector space, but the operation does not lead to a group structure.
Not every linear function has an inverse with respect to composition, and typically
not even the nonzero elements can be expected to have inverses in general.

There is a subset Aut(V → V ) of invertible elements in L(V → V ) which contains
the identity mapping and is a group under composition. Note that Aut(V → V )
is not a vector space; it is neither closed under addition nor does it contain the
zero mapping. Nevertheless, this subset has an interesting use with regard to the
diagonalizable linear functions. Let

∆(V → V ) = {L ∈ L(V → V ) : L is diagonalizable}.

Exercise 2 Let I = ∆(V → V ) ∩ Aut(V → V ) denote the intersection of the
diagonalizable linear functions with the invertible linear functions in L(V → V ).

(a) Characterize the intersection I.

(b) Give an example to show the intersection I is not (typically) closed under addi-
tion.

(c) Under what circumstances if I ∪ {ζ}, where ζ : V → V by ζv ≡ 0 is the zero
mapping, closed under addition?

Let us focus only on the eigenvalues with multiplicity as an unordered condi-
tional. More precisely, given an unordered set

γ = {(λ1, k1), (λ2, k2), . . . , (λm, km)} (1)

with λ1, . . . , λm distinct elements of F and kj ∈ N = {1, 2, 3, . . .} with

m∑

j=1

kj = n = dimV,
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we can consider

Pγ = {L ∈ ∆(V → V ) : λj is an eigenvalue of L with dimEj = kj, j = 1, 2, . . . , m}

and
Ej = {v ∈ V : Lv = λjv} for j = 1, 2, . . . , m.

Each diagonalizable linear function L ∈ ∆(V → V ) is in precisely one Pγ. That is,
denoting by Γ the indexing set of all sets γ as described in (1)

∆(V → V ) = ∪γ∈ΓPγ

is a partition of ∆(V → V ); each of the sets Pγ is nonempty and each pair Pγ and
Pη with γ and η distinct are disjoint:

Pγ ∩ Pη = φ, γ 6= η.

The partition sets Pγ do not typically all have the same number of elements.

Exercise 3 Give examples showing partition sets in ∆(V → V ) with different num-
bers of elements.

The partition sets Pγ described above determined by an unordered collection of γ
of eigenvalues with multiplicities has a particular structure:

Theorem 1 (similarity theorem) If γ is an index set as described in (1) and L0 is
any fixed element of Pγ, then

Pγ = {TL0T
−1 : T ∈ Aut(V → V )}.

As per this theorem partition sets Pγ of the kind described above are called conjugacy
classes or similarity classes and correspond to a mapping diagram:

L0

V −→ V

T ↓ ↓ T

V −→ V

L = TL0T
−1

As mentioned above no notion of the vector space V with any particular basis should
be attached to this diagram; that only leads to confusion. I won’t give the full proof
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of the partition/conjugacy result stated above, but I will mention some sets and
functions that are useful in organizing and carrying out the details of that proof.
First of all, we can let

B0 = {v1, v2, . . . , vn}

be a basis of V of eigenvectors for L0. In order to determine a relation between L0

and another linear function L with the same unordered eigenvalues and corresponding
multiplicities, it is useful to organize and order the eigenvalues associated with each
vj ∈ B0. Let

Aℓ = {vj ∈ B0 : (λℓ, vj) is an eigenvalue/eigenvector pair for L0}

where λ1, λ2, . . . , λm are the distinct eigenvalues of L0. Similarly, if L is in the same
partition Pγ containing L0 and/or L = TL0T

−1 for some T ∈ Aut(V → V ), then the
distinct eigenvalues of L are also λ1, λ2, . . . , λm, and we can similarly define

Bℓ = {wj ∈ B : (λℓ, wj) is an eigenvalue/eigenvector pair for L}

and B = {w1, w2, . . . , wn} is a basis of V consisting of eigenvectors of L.
Notice that we can first find a permutation

σ : {1, 2, 3, . . . , n} → {1, 2, 3, . . . n}

which is just a bijection such that

µσ(1) ≤ µσ(2) ≤ µσ(3) ≤ · · · ≤ µσ(n)

where L0vj = µjvj. Similarly, there is a permutation

τ : {1, 2, 3, . . . , n} → {1, 2, 3, . . . n}

for which
νσ(1) ≤ νσ(2) ≤ νσ(3) ≤ · · · ≤ νσ(n)

with Lwj = νjvj.
In order to show

Pγ ⊂ {TL0T
−1 : T ∈ Aut(V → V )}

one must identify1 a linear automorphism T for which L = TL0T
−1. This can be

accomplished by determining the appropriate correspondence between B and B0 using
the permutations σ and τ above.

1This automorphism will not be unique in general because the ordering of the corresponding

eigenvectors in eigenspaces of dimension greater than one can be switched.
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In order to show

{TL0T
−1 : T ∈ Aut(V → V )} ⊂ Pγ

one needs to show the linear function L = TL0T
−1 : V → V has the same eigenvalues

with the same multiplicities as L0. Again, it should be emphasized that L is a different
linear function from L0; what the two mappings share in common are the collection
of eigenvalues with corresponding multiplicities; they are not somehow “the same
linear functions with respect to different bases.” That doesn’t make any sense. It
can be said that the matrix of L with respect to the basis B0 = {v1, v2, . . . , vn} is the
same as the matrix of L0 with respect to the basis B = {w1, w2, . . . , wn}, but I’m not
really seeing much useful information in that.2 From the higher level point of view of
classing distinct linear functions together on the basis of sharing the same eigenvalues
(with corresponding multiplicities), the notion of conjugate linear mappings seems to
have some significance.

2Maybe there is useful information in this assertion, but I don’t know what it is.
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