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Generally we consider a linear function L : V → V admitting a two-dimensional
invariant subspace1 W ⊂ V containing a one-dimensional eigenspace

span{v}

associated with an eigenvalue λ and such that no vector w ∈ W\ span{v} is an
eigenvector. We focus attention on the restriction

L∣
∣

W

: W → W,

and for most of the discussion the values of L at points outside of the subspace W
will be of little or no consequence. Accordingly we refer to the restriction simply as
L : W → W . For any vector w ∈ W\ span{v} we have

W = span{v} ⊕ span{w}

and we take as our first task to analyze the image vector

Lw = av + bw.

Note that we know Lv = λv, so the first column of the matrix of L is (λ, 0)⊥:

A =

(

λ ∗
0 ∗

)

.

1Note that V may be infinite dimensional here.
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Lemma 1 If w0 ∈ W\ span{v} where W is a two-dimensional invariant subspace as
above with exactly one one-dimensional eigensubspace spanned by an eigenvector v,
and w0 is not an eigenvector, then

Lw0 = av + λw0 where a 6= 0.

Proof: As mentioned above

W = span{v} ⊕ span{w0}

and Lw0 = av + bw0 for some unique a and b in the field. We know a 6= 0 because
otherwise w0 is an eigenvector. This of course holds even if there might be another
eigenvector within W\ span{v}.

Since a 6= 0, and Lw0 = av + bw0, it follows that

(L− λ id)w0 = av + (b− λ)w0 6= 0 (1)

(L− λ id)(L− λ id)w0 = (b− λ)(L− λ id)w0. (2)

The computation (2) follows quickly from the observation that (L−λ id)v = 0 because
(λ, v) is an eigenvalue/eigenvector pair. We conclude from (1-2) that (L− λ id)w0 is
an eigenvector for L− λ id : W → W . In particular,

L(L− λ id)w0 = λ(L− λ id)w0 + (b− λ)(L− λ id)w0 = b(L− λ id)w0. (3)

Exercise 1 Compute L(L− λ id)w0 directly using (1) to obtain (3).

This means (L − λ id)w0 is an eigenvector for L in W . The associated eigenvalue is
b, but the only available eigenvalue for the restriction is λ. Therefore b = λ and the
assertion of the lemma is established. �

In view of the lemma the matrix of the restriction of L to W with respect to
the basis {v, w0} where v is any eigenvector in W and w0 is any vector with w0 ∈
W\ span{v} is

A =

(

λ a
0 λ

)

with a 6= 0. (4)

It is traditional to make a specific choice of the vector w = w0 in relation to the
particular eigenvector v under consideration chosen to make the resulting matrix (4)
both definite and, in some sense, “simplest.”
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Given a vector w ∈ W\ span{v} then with Lw = av + λw0 we take w1 = w/a so
that

Lw1 =
1

a
Lw = v +

1

a
λw = v + λw1.

The matrix of L (restricted to W ) with respect to the basis {v, w1} is

J =

(

λ 1
0 λ

)

,

and this is called the Jordan form matrix.
There is one last observation I would like to make about this two-dimensional

case: While the vector w = w1 is not an eigenvector, it may be considered as an
element in what is called a cyclic basis.2 To see the cyclic form we use the operator
L− λ id which played the important role of generating an eigenvector in the proof of
the lemma. To be precise, (L− λ id)w1 = v so that the basis {v, w1} may be written
as

{(L− λ id)w1, w1}.

Generally, the cycle in the cyclic basis starts from the end of the basis:

w, (L− λ id)w.

In this case, we can choose any vector w ∈ W\ span{v} to get a cyclic basis

{(L− λ id)w = v, w}

with respect to which the matrix of L has the form

A =

(

λ a
0 λ

)

,

and we can choose w1 = w/a to get the particular cyclic/Jordan basis with respect
to which we get

J =

(

λ 1
0 λ

)

.

This situation for higher dimensional Jordan subspaces is not quite so simple.

2Some textbooks, including Axler’s Linear Algebra Done Right, call the elements of the cyclic

basis “generalized eigenvectors.”
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Higher dimensional Jordan subspaces

It is not difficult to imagine ordering additional cyclic basis vectors to obtain an
invariant subspace containing precisely one one-dimensional eigenspace. Proceeding
from the opposite direction this does occur and may be characterized as follows:
Again in the setting where L : V → V is a linear function, if W is a k-dimensional
invariant subspace in which v is an eigenvector and each w ∈ W\ span{v} is not an
eigenvector, then there is some vector w1 ∈ W for which

{w1, (L− λ id)w1, (L− λ id)2w1, . . . , (L− λ id)k−1w1}

is a basis for W with
(L− λ id)k−1w1 = v.

Reversing the order we have the basis

{v, (L− λ id)k−2w1, . . . , (L− λ id)w1, w1} (5)

with respect to which the matrix of the restriction

L = L∣
∣

W

is

J =















λ 1 0 · · · 0
0 λ 1 0

0 0 λ
. . .

...
...

. . . 1
0 · · · 0 λ















(6)

with

ajj = λ for j = 1, 2, . . . , k,

aj,j+1 = 1 for j = 1, 2, . . . , k − 1,

aij = 0 for otherwise.

Exercise 2 Verify the matrix of the restriction L with respect to the basis (5) is given
by the matrix (6).
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Exercise 3 Show that in the case of a k-dimensional Jordan subspace described
above, the subspace

span{v, (L− λ id)k−2w1} (7)

is a two dimensional Jordan invariant subspace. Show that Jordan subspaces of all
intermediate dimensions ℓ = 3, 4, . . . , k − 1 can be generated by adjoining specific
vectors w to the subspace given in (7). Characterize all possible choices of w at each
step.

The last exercise illustrates the comment at the end of the last section suggesting
the vector w1 generating the cyclic basis must be chosen with some care. If one were
to choose any w ∈ W\ span{v} in the higher dimensional case, one might choose, for
example,

w = (L− λ id)k−2w1

and only generate the basis in (7).
Nothing we have said so far is restricted to the case of a real vector space V . In

particular, it should be noted that the existence of non-trivial Jordan shear may be
present in a linear function L : V → V defined on a complex vector space. Any such
linear function is not diagonalizable. Indeed, we now state a kind of general result
which is specifically restricted, not to only real vector spaces, but to only complex
vector spaces.

Theorem 1 (Jordan decomposition theorem) If V is a finite dimensional complex
vector space and L : V → V is linear, then there exist invariant subspacesW1,W2, . . . ,Wm

with

V =

m
⊕

j=1

Wj

and associated with each Wj for j = 1, 2, . . . , m is an eigenvalue λj for which there
is an eigenvector vj ∈ Wj with Lvj = λjvj and each w ∈ Wj\ span{vj} is not an
eigenvector, but there is a vector wj ∈ Wj generating a cyclic basis

{vj , (L− λ id)kj−2wj, . . . , (L− λ id)wj , wj}

where kj = dimWj so that the matrix of L with respect to the concatenation of these
bases has the block form











J1 0 · · · 0
0 J2 0
...

. . .
...

0 0 · · · Jm










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with each jj a Jordan form matrix as indicated in (6) with the eigenvalue λj on the
diagonal. Note we are “allowing” here the degenerate case of a “Jordan subspace
of dimension one” so that Jj = (λj) is possible. Thus, the theorem includes the
diagonalizable case for linear functions on finite dimensional complex vector spaces as
well as diagonalizability on invariant subspaces of various dimensions. The situation
as described by this theorem is as complicated as it can get, for example, for L : Cn →
Cn.

The situation is actually a bit more complicated if V is allowed to be a real
vector space. A finite dimensional real vector space can have a two-dimensional
invariant subspace with no real eigenvalue/eigenvector pair.

Exercise 4 Say L : C2 → C2 satisfies the following

(i) Lv ∈ R2 for each v ∈ R2 ⊂ C2. Notice we are not saying R2 is an invariant
subspace here because R

2 is not a subspace of C2. We are simply saying R
2 is

an invariant subset.

(ii) There does not exist any vector v ∈ R2\{0} for which

Lv ∈ {cv : c ∈ R}.

Show the following:

(a) The restriction
T = L∣

∣

R2

: R2 → R
2

is a linear function on R2.

(b) There are no (real) eigenvectors of T in R2.

(b) There are no (complex) eigenvectors of L in R2.

Here is the main question: What is the Jordan block structure of L in this case?
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