§ 4.1-4 Armstrong

Let X be a topological space. We have talked about constructing a quotient space of X with respect to a subset (identifying the subset to a point). We have talked about a quotient of X with respect to an equivalence relation, which is just another way to define a partition. We have talked about a quotient of X with respect to a bijection.

Finally, we wish to describe the quotient of X by a **group action**. Here are the relevant definitions:

A group G is, first of all, a set with an "operation" $*: G \times G \to G$. We have used the symbol "*" to denote the operation, but many other "binary operator symbols" are used, and the image of a pair is expressed in terms of this symbol in the following way:

$$*(g,h) = g * h$$
 for $g,h \in G$.

In order for G to be a **group**, we require the operation to have the following properties:

- 1. (g * h) * k = g * (h * k) for $g, h, k \in G$. (We say the operation is **associative**.)
- 2. There is some $e \in G$ (called the identity element) with e * g = g * e = g for all $g \in G$.
- 3. For each $g \in G$, there is some $h \in G$ (called the inverse of g) such that h * g = g * h = e. (The element h is often denoted by g^{-1} , but may also be denoted by -g, especially if the symbol "+" is used for the operation.)

Given a group G and a set X, we say G acts on X if there is a **pairing**, i.e., a function $a: G \times X \to X$ (whose images we denote by a(g, x) = gx) such that

(a) ex = x for all $x \in S$, and

(b) (g * h)x = g(hx) for all $g, h \in G$ and $x \in X$.

Given a topological space X and a group G acting on X, the topological space X/G is defined to be the indentification space determined by the partition

$$\mathcal{P}_G = \{\{gx : g \in G\} : x \in X\}.$$

- 1. (5 points) Show that the inverse elements in a group are unique. (To do this, assume there are elements h_1 and h_2 satisfying $h_i g = gh_i = e$ for i = 1, 2 and g some fixed element in the group. Then show $h_1 = h_2$.)
- 2. (5 points) Show that a **left inverse** in a group is an inverse, i.e., if hg = e for some g in a group, then $h = g^{-1}$.
- 3. (5 points) Show the identity element in a group is unique.
- 4. (5 points) Let G be a set with an associative operation. Assume also that there is an element e with eg = g for all $g \in G$, i.e., e is a **left identity**. Assume also that for each $g \in G$, there is some $h \in G$ with hg = e, i.e., there are **left inverses**. Show G is a group, i.e., the left identity is an identity and the left inverses are (two sided) inverses. Hint: First show that a left inverse is a right inverse.

Name and section:

- 5. (5 points) Show that the integers $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$ are a group under addition.
- 6. (10 points) If $\phi: X \to X$ is a bijection, then show \mathbb{Z} acts on X by $jx = \phi^j(x)$. If X is a topological space, what is the relation between X/ϕ and X/\mathbb{Z} ?
- 7. Let $\Sigma = [\pi/4, 3\pi/4] \times \mathbb{R}$ and $q_1 : \Sigma \to \mathbb{R}^3$ by

 $q_1(\phi, \theta) = (\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi).$

- (a) (5 points) Identify $q_1(\Sigma)$. Prove your assertion.
- (b) (10 points) Consider an : $\mathbb{R}^3 \to \mathbb{R}^3$ by an(x) = -x. Identify $X_1/$ an and prove your assertion.
- 8. (10 points) Express X_1 and from the previous problem as X_1/G where G is an appopriate group acting on X_1 . Hint: $G = \{id, an\}$ is a group.
- 9. Consider $q : \mathbb{R}^1 \twoheadrightarrow Y = \{0, \pm 1\}$ by

$$q(x) = \begin{cases} -1, & x < 0\\ 0, & x = 0\\ 1, & x > 0 \end{cases}$$

- (a) (10 points) What is the identification topology on Y as a set?
- (b) (5 points) Is Y Hausdorff?
- (c) (5 points) Is Y as a set with the identification topology homeomorphic to Y as a topological subspace of \mathbb{R} ?
- 10. (5 points) Show $\mathbb{Z}^2 = \{(n, m) : n, m \in \mathbb{Z}\}$ is a group under addition.
- 11. (5 points) Show \mathbb{Z}^2 acts on \mathbb{R}^2 by (n,m)(x,y) = (x+n,y+m). What is $\mathbb{R}^2/\mathbb{Z}^2$ where \mathbb{Z}^2 is considered as a group with this action?
- 12. (10 points) What is $\mathbb{R}^2/\mathbb{Z}^2$ where \mathbb{Z}^2 is considered as a subspace of \mathbb{R}^2 ? Is this the same space as considered in the last problem? Can you prove your assertion?