§ 4.1-4 Armstrong
Let X be a topological space. We have talked about constructing a quotient space of X with respect to a subset (identifying the subset to a point). We have talked about a quotient of X with respect to an equivalence relation, which is just another way to define a partition. We have talked about a quotient of X with respect to a bijection.

Finally, we wish to describe the quotient of X by a group action. Here are the relevant definitions:

A group G is, first of all, a set with an "operation" *: $G \times G \rightarrow G$. We have used the symbol "*" to denote the operation, but many other "binary operator symbols" are used, and the image of a pair is expressed in terms of this symbol in the following way:

$$
*(g, h)=g * h \quad \text { for } g, h \in G .
$$

In order for G to be a group, we require the operation to have the following properties:

1. $(g * h) * k=g *(h * k)$ for $g, h, k \in G$. (We say the operation is associative.)
2. There is some $e \in G$ (called the identity element) with $e * g=g * e=g$ for all $g \in G$.
3. For each $g \in G$, there is some $h \in G$ (called the inverse of g) such that $h * g=g * h=e$. (The element h is often denoted by g^{-1}, but may also be denoted by $-g$, especially if the symbol " + " is used for the operation.)

Given a group G and a set X, we say G acts on X if there is a pairing, i.e., a function $a: G \times X \rightarrow X$ (whose images we denote by $a(g, x)=g x)$ such that
(a) $e x=x$ for all $x \in S$, and
(b) $(g * h) x=g(h x)$ for all $g, h \in G$ and $x \in X$.

Given a topological space X and a group G acting on X, the topological space X / G is defined to be the indentification space determined by the partition

$$
\mathcal{P}_{G}=\{\{g x: g \in G\}: x \in X\} .
$$

1. (5 points) Show that the inverse elements in a group are unique. (To do this, assume there are elements h_{1} and h_{2} satisfying $h_{i} g=g h_{i}=e$ for $i=1,2$ and g some fixed element in the group. Then show $h_{1}=h_{2}$.)
2. (5 points) Show that a left inverse in a group is an inverse, i.e., if $h g=e$ for some g in a group, then $h=g^{-1}$.
3. (5 points) Show the identity element in a group is unique.
4. (5 points) Let G be a set with an associative operation. Assume also that there is an element e with $e g=g$ for all $g \in G$, i.e., e is a left identity. Assume also that for each $g \in G$, there is some $h \in G$ with $h g=e$, i.e., there are left inverses. Show G is a group, i.e., the left identity is an identity and the left inverses are (two sided) inverses. Hint: First show that a left inverse is a right inverse.
5. (5 points) Show that the integers $\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$ are a group under addition.
6. (10 points) If $\phi: X \rightarrow X$ is a bijection, then show \mathbb{Z} acts on X by $j x=\phi^{j}(x)$. If X is a topological space, what is the relation between X / ϕ and X / \mathbb{Z} ?
7. Let $\Sigma=[\pi / 4,3 \pi / 4] \times \mathbb{R}$ and $q_{1}: \Sigma \rightarrow \mathbb{R}^{3}$ by

$$
q_{1}(\phi, \theta)=(\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi) .
$$

(a) (5 points) Identify $q_{1}(\Sigma)$. Prove your assertion.
(b) (10 points) Consider an : $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $\operatorname{an}(x)=-x$. Identify $X_{1} /$ an and prove your assertion.
8. (10 points) Express X_{1} / an from the previous problem as X_{1} / G where G is an appopriate group acting on X_{1}. Hint: $G=\{\mathrm{id}, \mathrm{an}\}$ is a group.
9. Consider $q: \mathbb{R}^{1} \rightarrow Y=\{0, \pm 1\}$ by

$$
q(x)= \begin{cases}-1, & x<0 \\ 0, & x=0 \\ 1, & x>0\end{cases}
$$

(a) (10 points) What is the identification topology on Y as a set?
(b) (5 points) Is Y Hausdorff?
(c) (5 points) Is Y as a set with the identification topology homeomorphic to Y as a topological subspace of \mathbb{R} ?
10. (5 points) Show $\mathbb{Z}^{2}=\{(n, m): n, m \in \mathbb{Z}\}$ is a group under addition.
11. (5 points) Show \mathbb{Z}^{2} acts on \mathbb{R}^{2} by $(n, m)(x, y)=(x+n, y+m)$. What is $\mathbb{R}^{2} / \mathbb{Z}^{2}$ where \mathbb{Z}^{2} is considered as a group with this action?
12. (10 points) What is $\mathbb{R}^{2} / \mathbb{Z}^{2}$ where \mathbb{Z}^{2} is considered as a subspace of \mathbb{R}^{2} ? Is this the same space as considered in the last problem? Can you prove your assertion?

