\S 5.1-2 Armstrong: The Fundamental Group

Read § 1.5-6 of Chapter 1 in Armstrong.

Let X be a path connected topological space.

A loop in X is a continuous function $\gamma : [0,1] \to X$ with $\gamma(0) = \gamma(1)$. The set of all loops γ with $\gamma(0) = \gamma(1) = p \in X$ is called the **loop space of** X **at** p. Denote the loop space at p by Λ_p .

Two loops γ_0 and γ_1 in Λ_p are said to be **homotopic** if there is a continuous function

$$H:[0,1]\times[0,1]\to X$$

such that

- (i) $H(t,0) \equiv \gamma_0(t)$,
- (i) $H(0,s) \equiv H(1,s) \equiv p$ for $0 \le s \le 1$, and

(i)
$$H(t,1) \equiv \gamma_1(t)$$
.

Note that for each fixed s, the function $\eta : [0,1] \to X$ by $\eta(t) = H(t,s)$ is a loop in Λ_p . Sometimes we will write $\eta(t) = \eta_s(t) = \eta(t;s) = H(t,s)$.

- 1. (10 points) (1.6.14,26) Make a Möbius strip from paper and cut it in half along the center circle. Show the result is homeomorphic to a cylinder. Can you manipulate a paper cylinder into a Móbius strip by identifying opposite points on one boundary circle?
- 2. (10 points) (1.6.23) Let $X = \mathbb{S}^1 \cup \{(x, 0) : 0 \le x \le 1\} \subset \mathbb{R}^2$. Show that X and $\mathbb{S}^1 \subset \mathbb{R}^2$ are not homeomorphic.
- 3. (10 points) Let $p, q \in B_1(0) \subset \mathbb{R}^2$. Find an homeomorphism $h : \overline{B_1(0)} \to \overline{B_1(0)}$ with h(p) = q and h(q) = p.
- 4. (10 points) Again consider $B_1(0) \subset \mathbb{R}^2$ and the function $h: B_1(0) \to B_1(0)$ by

$$h(x, y) = r(\cos(\theta + 2\pi r/(1-r)), \sin(\theta + 2\pi r/(1-r)))$$

where $r = \sqrt{x^2 + y^2}$ and $(x, y) = r(\cos \theta, \sin \theta)$ with $0 \le \theta < 2\pi$. Is h a homeomorphism? Justify your answer.

5. (10 points) Let $\overline{h} : \overline{B_1(0)} \to \overline{B_1(0)}$ be an extension of the function in the previous problem. Is \overline{h} continuous? Jusfify your answer.

Name and section:

6. (10 points) If $f : [0,1] \to [0,1]$ is any increasing continuous function with f(0) = 0 and f(1) = 1 and $\gamma : [0,1] \to X$ is any loop in $\Lambda_p = \Lambda_p(X)$, then show $\alpha : [0,1] \to X$ by $\alpha(t) = \gamma \circ f(t)$ is homotopic to γ .