§ 5.1-2 Armstrong: The Fundamental Group
Read § 1.5-6 of Chapter 1 in Armstrong.
Let X be a path connected topological space.
A loop in X is a continuous function $\gamma:[0,1] \rightarrow X$ with $\gamma(0)=\gamma(1)$. The set of all loops γ with $\gamma(0)=\gamma(1)=p \in X$ is called the loop space of X at p. Denote the loop space at p by Λ_{p}.

Two loops γ_{0} and γ_{1} in Λ_{p} are said to be homotopic if there is a continuous function

$$
H:[0,1] \times[0,1] \rightarrow X
$$

such that
(i) $H(t, 0) \equiv \gamma_{0}(t)$,
(i) $H(0, s) \equiv H(1, s) \equiv p$ for $0 \leq s \leq 1$, and
(i) $H(t, 1) \equiv \gamma_{1}(t)$.

Note that for each fixed s, the function $\eta:[0,1] \rightarrow X$ by $\eta(t)=H(t, s)$ is a loop in Λ_{p}. Sometimes we will write $\eta(t)=\eta_{s}(t)=\eta(t ; s)=H(t, s)$.

1. (10 points) $(1.6 .14,26)$ Make a Möbius strip from paper and cut it in half along the center circle. Show the result is homeomorphic to a cylinder. Can you manipulate a paper cylinder into a Móbius strip by identifying opposite points on one boundary circle?
2. (10 points) (1.6.23) Let $X=\mathbb{S}^{1} \cup\{(x, 0): 0 \leq x \leq 1\} \subset \mathbb{R}^{2}$. Show that X and $\mathbb{S}^{1} \subset \mathbb{R}^{2}$ are not homeomorphic.
3. (10 points) Let $p, q \in B_{1}(0) \subset \mathbb{R}^{2}$. Find an homeomorphism $h: \overline{B_{1}(0)} \rightarrow \overline{B_{1}(0)}$ with $h(p)=q$ and $h(q)=p$.
4. (10 points) Again consider $B_{1}(0) \subset \mathbb{R}^{2}$ and the function $h: B_{1}(0) \rightarrow B_{1}(0)$ by

$$
h(x, y)=r(\cos (\theta+2 \pi r /(1-r)), \sin (\theta+2 \pi r /(1-r)))
$$

where $r=\sqrt{x^{2}+y^{2}}$ and $(x, y)=r(\cos \theta, \sin \theta)$ with $0 \leq \theta<2 \pi$. Is h a homeomorphism? Justify your answer.

5. (10 points) Let $\bar{h}: \overline{B_{1}(0)} \rightarrow \overline{B_{1}(0)}$ be an extension of the function in the previous problem. Is \bar{h} continuous? Jusfify your answer.

Name and section: \qquad
6. (10 points) If $f:[0,1] \rightarrow[0,1]$ is any increasing continuous function with $f(0)=0$ and $f(1)=1$ and $\gamma:[0,1] \rightarrow X$ is any loop in $\Lambda_{p}=\Lambda_{p}(X)$, then show $\alpha:[0,1] \rightarrow X$ by $\alpha(t)=\gamma \circ f(t)$ is homotopic to γ.

