Math 4431, Assignment 1b: Introduction Name and section:

§ 1.1-6 Armstrong

1. (20 points) (Chapter 1 Problem 6 in Armstrong) A regular polyhedral surface is one in which each face has the same number p edges the same number q faces meeting at each vertex. Use Euler's formula to show

$$
\frac{1}{p}+\frac{1}{q}=\frac{1}{2}+\frac{1}{e} .
$$

2. (20 points) (Problem 7) Use the previous problem to show there are only 5 regular polyhedral surfaces. Hint: Start by showing $3 \leq p \leq 5$.
3. (20 points) (Problem 10) A homeomomorphism is a one-to-one continuous function from one set onto another such that the inverse is also continuous. Show that any two open intervals in the real line \mathbb{R} are homeomorphic. Can you find a one-to-one continuous map of one interval onto another which does not have a continuous inverse?
4. (20 points) (Definition 2.1) Consider the collection \mathcal{A} of subsets A of \mathbb{R}^{n} with the following property:

$$
\text { If } p \in A \text {, then there is some } r>0 \text { such that }
$$

$$
B_{r}(p)=\left\{x \in \mathbb{R}^{n}:|x-p|<r\right\} \subset A .
$$

Show that \mathcal{A} is a topology on \mathbb{R}^{n}. (The set $B_{r}(p)$ is called the ball of radius r centered at p.)

