§ 2.1 Armstrong

1. (20 points) (2.1.1) Show $\overline{A \cup B}=\bar{A} \cup \bar{B}$.
2. (20 points) (2.1.1) Find sets A and B in a topological space X such that

$$
\overline{A \cap B} \neq \bar{A} \cap \bar{B} .
$$

3. (20 points) (2.1.3) Let $A=\left\{(x, \sin (1 / x)) \in \mathbb{R}^{2}: x>0\right\}$.
(a) Find int A, clus A, \bar{A}, and ∂A.
(b) Consider $X=\bar{A}$ in the subspace topology induced by \mathbb{R}^{2}. Find int A, clus A, \bar{A}, and ∂A with respect to X.
4. (20 points) (2.1.7) If X is a topological space and $A \subset X$ is considered in the subspace topology, then show $C \subset A$ is closed in A if and only if $C=A \cap D$ for some closed set D in X.
5. (20 points) Let X be a set. Let

$$
\mathcal{T}=\{\phi\} \cup\left\{A \subset X: A^{c} \text { is a finite set }\right\} .
$$

Show the following:
(a) \mathcal{T} is a topology on X.
(b) If $A \subset X$ is infinite, then $\bar{A}=X$.
(c) If $A \subset X$ is finite, then clus $A=\phi$.

