§ 2.1 Armstrong

- 1. (20 points) (2.1.1) Show $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- 2. (20 points) (2.1.1) Find sets A and B in a topological space X such that

 $\overline{A \cap B} \neq \overline{A} \cap \overline{B}.$

- 3. (20 points) (2.1.3) Let $A = \{(x, \sin(1/x)) \in \mathbb{R}^2 : x > 0\}.$
 - (a) Find int A, clus A, \overline{A} , and ∂A .
 - (b) Consider $X = \overline{A}$ in the subspace topology induced by \mathbb{R}^2 . Find int A, clus A, \overline{A} , and ∂A with respect to X.
- 4. (20 points) (2.1.7) If X is a topological space and $A \subset X$ is considered in the subspace topology, then show $C \subset A$ is closed in A if and only if $C = A \cap D$ for some closed set D in X.
- 5. (20 points) Let X be a set. Let

$$\mathcal{T} = \{\phi\} \cup \{A \subset X : A^c \text{ is a finite set}\}.$$

Show the following:

- (a) \mathcal{T} is a topology on X.
- (b) If $A \subset X$ is infinite, then $\overline{A} = X$.
- (c) If $A \subset X$ is finite, then clus $A = \phi$.