Math 4431, Assignment 4a: compactness Name and section:

§ 3.1-4 Armstrong

1. (2.1.12) Here are some definitions:

A topological space X is called first countable if for each point $x \in X$ there is a countable collection of open sets \mathcal{B} such that for each open set U with $x \in U$, there is some $B \in \mathcal{B}$ with $x \in B \subset U$, i.e., there exists a countable "base" of open sets "at each point."
A topological space X is called second countable if there is a countable base.
A topological space X is said to be separable if it contains a countable dense subset.
(a) (2 points) Show that a second countable space is always first countable.
(b) (2 points) Show that a first countable space need not always be second countable.
(c) (3 points) Show that a first countable space which is separable is second countable. (Correction: Apparently, this is not correct; I'll need to check. Please ignore this part.)
(d) (3 points) Show that a second countable space is separable.
2. (10 points) (3.2.1) Show that the closure of the unit ball in $L^{2}(0,1)$ is not compact. Recall that $L^{2}(0,1)$ is the collection of all square integrable functions, i.e., $f \in L^{2}$ if $\int f^{2}<\infty$, under the metric topology determined by

$$
d(f, g)=\left[\int(f-g)^{2}\right]^{1 / 2} .
$$

3. (10 points) (3.2.2) Let $A_{1} \supset A_{2} \supset A_{3} \supset \cdots$ be a nested sequence of nonempty closed sets in a complete metric space. Assume also that the diameters of these sets satisfy

$$
\lim _{j / \infty} \operatorname{diam}\left(A_{j}\right)=0 .
$$

Show that the intersection

$$
\cap_{j=1}^{\infty} A_{j}
$$

consists of precisely one point. Remember that a metric space is called complete if every Cauchy sequence in the space converges (to a point in the space), and the diameter of a set A in a metric space is defined by

$$
\operatorname{diam}(A)=\sup _{x_{1}, x_{2} \in A} d\left(x_{1}, x_{2}\right) .
$$

4. (10 points) (3.3.5) Recall that the unit sphere in R^{n+1} is defined by

$$
\mathbb{S}^{n}=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1}: x_{1}^{2}+\cdots+x_{n+1}^{2}=1\right\} .
$$

Let $p_{1}, \ldots, p_{k} \in \mathbb{S}^{n}$. Show that $X=\mathbb{S}^{n} \backslash\left\{p_{1}, \ldots, p_{k}\right\}$ is not compact.
5. (10 points) (3.3.8, Lindelöf's theorem) Show that every open cover of a second countable space has a countable subcover.

