§ 3.3-5 Armstrong

Definition A topological space X is **locally compact** if each point $x \in X$ has a compact neighborhood, i.e., if there is a compact set N and an open set U with $x \in U \subset N$.

- 1. (10 points) (3.3.15) Show that any compact space is locally compact.
- 2. (10 points) (3.3.17 important) Let X be a locally compact Hausdorff space (like \mathbb{R}^n). Show there is a compact topological space

$$\tilde{X} = X \cup \{\infty\}$$

where " ∞ " denotes a single additional point (not in X) and \tilde{X} has open sets

 $\tilde{\mathcal{T}} = \{U : U \text{ is open in } X\} \cup \{(X \setminus K) \cup \{\infty\} : K \subset X \text{ is compact}\}.$

 $(\tilde{X}, \tilde{\mathcal{T}})$ is called the **one point compactification** of X.

- 3. (10 points) (3.4.20) Let X and Y be topological spaces. If $A \subset X$ and $B \subset Y$, then $\overline{A \times B} = \overline{A} \times \overline{B}$.
- 4. (10 points) (3.5.31) Let X be the real line with the finite complement topology. If $x \in X$, then what is the (unique) component containing x? What does this tell you about X?
- 5. (10 points) (3.5.32) If $X = \bigcup_{j=1}^{k} C_j$ where C_1, \ldots, C_k are the distinct components of X, then show that C_j is open for $j = 1, \ldots, k$.