§ 3.3-6 Armstrong

Definition A topological space X is **locally connected** if each point $x \in X$ and each open set U with $x \in U$, there is an open connected set V with $x \in V \subset U$.

- 1. (20 points) (3.5.34) Show that if X is homeomorphic to an open set in \mathbb{R}^n , then X is locally connected.
- 2. (20 points) (3.5.34) Show that $X = \{1/j \in \mathbb{R} : j = 1, 2, 3, ...\}$ is locally connected (as a subset/subspace of \mathbb{R}), but $X \cup \{0\}$ is not.
- 3. (20 points) (3.6.37-38) Show that \mathbb{S}^2 is path connected.
- 4. (20 points) (3.6.41) Let X be a locally connected topological space. If $A \subset X$ is path connected, then can you show \overline{A} is connected? Can you show \overline{A} is path connected?
- 5. (20 points) Let $U \subset \mathbb{R}^2$ be open and connected with $x_0 \in U$. Let Γ denote the family of all continuous paths $\gamma : [0, 1] \to U$ with $\gamma(0) = x_0$, and let $\{\gamma\}$ denote the image of γ , i.e.,

$$\{\gamma(t) : t \in [0,1]\}.$$

Show

```
\cup_{\gamma\in\Gamma}\{\gamma\}
```

is closed.