§ 4.1-2 Armstrong

Definition/Proposition If X is a topological space, A is a set, and $p : X \rightarrow A$ is a surjective function, then p is called a (generalized) **projection** of X onto A, and A becomes a topological space with topology

 $\mathcal{Q} = \{ V \subset A : p^{-1}(V) \text{ is open in } X \}.$

This topology is called the **quotient topology** on A.

- 1. (10 points) Figure out what needs to be proved as the "proposition" part of the definition/proposition above, and prove it.
- 2. (10 points) Consider

 $\mathcal{P}_M = \{\{(x,y)\} : 0 < x < 2\pi, \ -1 \le 2y \le 1\} \cup \{\{(0,y), (2\pi, -y)\} : -1 \le 2y \le 1\}.$

This is a partition of the rectangle $X = [0, 2\pi] \times [-1/2, 1/2]$. Show the function $p: X \to \mathcal{P}_M$ by p(x) = P where $x \in P$ is well-defined and onto. What is the quotient space \mathcal{P}_M ?

- 3. (10 points) Show that the projection map $p: X \to \mathcal{P}_M$ in the last problem is not a homeomorphism.
- 4. (10 points) Show that the quotient topology induced on Y by a homeomorphism $h : X \to Y$ is the same as the topology on Y. Can you show that the rectangle X (from problem 2) is not homeomorphic to \mathcal{P}_M ?
- 5. (10 points) Show that a continuous surjective function $q: X \to Y$ which is **closed**, i.e., q(A) is closed for every closed set $A \subset X$, is an **identification map**.