§ 4.1-2 Armstrong
Let X be a topological space and $A \subset X$. Recall that the topological space X / A is the identification space associated with the partition $\mathcal{P}=\{\{x\}: x \in X \backslash A\} \cup\{A\}$. This is the "one point quotient" of X by A.

We can also talk about a quotient of a topological space by a relation \sim or by a map.
A relation is a subset \sim of the cross-product of a set, say a topological space X with the properties

1. The diagonal is in the relation, i.e., $(x, x) \in \sim$ for every $x \in X$.
2. The relation is symmetric, i.e., if $(x, y) \in \sim$, then $(y, x) \in \sim$.
3. The relation is transitive, i.e., if $(x, y),(y, z) \in \sim$, then $(x, z) \in \sim$.

Whenever there is a relation on a set X, there is a partition of X into equivalence classes. The topological space associated with this partition is denoted by X / \sim.

Given a bijection $\phi: X \rightarrow X$, the orbit of an element is defined by $[x]=\left\{\phi^{j}(x): j \in \mathbb{Z}\right\}$. The orbits of a homeomorphism partition X, and the topology associated with $\mathcal{P}=\{[x]$: $x \in X\}$ is denoted by X / ϕ.

1. (20 points) Given a relation \sim, the condition $(x, y) \in \sim$ is usually written $x \sim y$. Reexpress the three conditions required of a relation in this notation, and show the following:
2. The equivalence classes $[x]=\{y \in X: x \sim y\}$ partition X.
3. Given any partition \mathcal{P} of X, there is a unique equivalence relation \sim on X with the sets in \mathcal{P} as equivalence classes.
4. (20 points) Show that the antipodal map an : $\mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ by $\mathrm{an}(x)=-x$ is a homeomorphism.
5. (20 points) (4.2.1) Let $\mathbb{P}^{n}=\mathbb{S}^{n} /$ an be n-dimensional projective space. Let \mathbb{S}^{n-1} denote the hypersurface boundary of the closed upper hemisphere \mathbb{S}_{+}^{n}, i.e.,

$$
\mathbb{S}_{+}^{n}=\left\{x=\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1}:|x|=1, x_{n+1} \geq 0\right\}
$$

and

$$
\mathbb{S}^{n-1}=\left\{x \in \mathbb{S}_{+}^{n}: x_{n+1}=0\right\} .
$$

Consider $\phi: \mathbb{S}_{+}^{n} \rightarrow \mathbb{S}_{+}^{n}$ by

$$
\phi(x)= \begin{cases}x, & x \in \mathbb{S}_{+}^{n} \backslash \mathbb{S}^{n-1} \\ \operatorname{an}(x), & x \in \mathbb{S}^{n-1}\end{cases}
$$

Show that ϕ is a bijection and X / ϕ is (homeomorphic to) \mathbb{P}^{n}.

Name and section: \qquad
4. (20 points) (4.2.5) Let $X \subset \mathbb{R}^{2}$ be the union of circles

$$
X=\cup_{j=1}^{\infty}\left\{(x, y):(x-1 / j)^{2}+y^{2}=1 / j^{2}\right\}
$$

(with the subspace topology induced from \mathbb{R}^{2}. Let $Y=\mathbb{R} / z$ where $z: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
z(x)= \begin{cases}x, & x \notin \mathbb{Z} \\ x+1, & x \in \mathbb{Z} .\end{cases}
$$

Show that z is a bijection so that Y is well defined, and show that X and Y are not homeomorphic.
5. (20 points) (4.2.7) Recall that \mathbb{T}^{2} is a square, say $X=[0,2 \pi] \times[0,2 \pi]$ with opposite sides identified without twisting: $(x, 0) \sim(x, 2 \pi)$ and $(0, y) \sim(2 \pi, y)$. What topological space do you get if you further identify the union of a meridian circle $\left\{\left(x_{0}, y\right): 0 \leq y<2 \pi\right\}$ and a lattitudinal circle $\left\{\left(x, y_{0}\right): 0 \leq x<2 \pi\right\}$ to a single point? Can you prove your assertion?

