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As we come to the end of all things MATH 4431 (Fall Semester 2018)
it occurs to me that some final remarks are in order. There are a number
of results I think everyone in an elementary topology course should see and
think about (and probably see how to prove). For various reasons, I will
not have time to prove all these results. I may not have time to state and
discuss all of them in a lecture. For this reason, I will try to write down the
statements here.

A small number of you are do not seem to have a really solid understand-
ing of some basic notions like that of an open set, a continuous function, a
compact or connected set. At this point, it will be up to those of you who are
in this situation to do something about that. Some aspects of identification
spaces/maps are still a bit fuzzy for many of you. Again, it will be up to
you to put in the effort to fully understand these concepts and the related
results.

1 Covering spaces and liftings

In Chapter 10 Armstrong takes up these topics in some generality. Munkres
tackles them in Chapter 8 (page 331) of his book. The impression I get
is that they both consider them somewhat “optional” or at least somehow
advanced. I think of them as pretty basic.

Definition 1 Given an identification map φ : X → Y , we say φ is a cov-
ering map if for each x ∈ X, there is an open set V (in Y ) with

φ(x) ∈ V ⊂ Y
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such that φ−1(V ) is given by a partition (of disjoint open sets)

φ−1(V ) = ∪α∈ΓUα

with
φ∣

∣

Uα

: Uα → V a homeomorphism for each α ∈ Γ.

Note: The complicated part of the identification map structure can be ig-
nored here; all that is needed is for φ to be continuous and surjective.

Exercise 1 Show that if φ : X → Y is continuous and surjective and for
each x ∈ X, there is an open set V (in Y ) with

φ(x) ∈ V ⊂ Y

such that φ−1(V ) is given by a partition (of disjoint open sets)

φ−1(V ) = ∪α∈ΓUα

with
φ∣

∣

Uα

: Uα → V a homeomorphism for each α ∈ Γ,

then φ is an identification map (and hence a covering map).

Exercise 2 φ : R → S1 by φ(t) = (cos t, sin t) is a covering map.

Exercise 3 φ : R → T2 = S1 × S1 by φ(x, y) = (cosx, sin x, cos y, sin y) is a
covering map.

Definition 2 Given φ : X → Y and f : X0 → Y both continuous, a third
continuous function f̂ : X0 → X is a lifting of f if φ ◦ f̂ = f .

X0

f̂
−→ X

↓ φ

X0

f
−→ Y

Lemma 1 [path lifting lemma] If φ : X → Y is a covering map and
γ : [0, 1] → Y is a path, then given x0 ∈ X with φ(x0) = γ(0), there is a
unique lifting γ̂ of γ with γ̂(0) = x0.

[0, 1]
γ̂

−→ X
↓ φ

[0, 1]
γ

−→ Y
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Exercise 4 A lifting of a loop in Y may not be a loop in X.

Lemma 2 [homotopy lifting lemma] If φ : X → Y is a covering map
and H : [0, 1] × [0, 1] → Y is a path homotopy, then given x0 ∈ X with
φ(x0) = H(0, 0), there is a unique lifting Ĥ of H with Ĥ(0, 0) = x0.

[0, 1] × [0, 1]
Ĥ
−→ X

↓ φ

[0, 1] × [0, 1]
H
−→ Y

Example Remember the loop γ : [0, 1] → T2 by

γ(t) =

(

1 +
cos 6πt

2

)

(cos 2πt, sin 2πt, 0) +
sin 6πt

2
(0, 0, 1)

from Exam 3. There we had γ(0) = (3/2, 0, 0). We also had a covering map
φ : R2 → T2 by

φ(x, y) =
(

1 +
cos y

2

)

(cosx, sin xt, 0) +
sin y

2
(0, 0, 1),

and φ(0, 0) = (3/2, 0, 0). Note that

φ∣

∣

(−π,π)×(−π,π)

: (−π, π) × (−π, π) → T2

is a homeomorphism. This means there is only one possible path γ̂ : [0, t0] →R2 with
φ ◦ γ̂(t) = γ(t) (1)

namely,

γ̂(t) =

(

φ∣

∣

(−π,π)×(−π,π)

)

−1

◦ γ(t),

where (1) holds as long as γ(t) ∈ V0 = φ((−π, π) × (−π, π)) and t0 can be
taken as large as possible consistent with this condition. We see the first
time γ(t) exist V0 is when t0 = 1/6 and γ(1/6) = (cos π/3, sinπ/3, 0)/2.
Looking down from above, we see Figure 1(right). The portion of the curve
corresponding to y0 = 6πt0 = π and x0 = 2πt0 = π/3 reaches the boundary
of φ((−π, π)× (−π, π)) on the inner circle of T2 with t0 = 1/6. Since γ(t) =
φ(2πt, 6πt), the lifting must be

γ̂(t) = (2πt, 6πt) for 0 ≤ t ≤ t0 = 1/6.
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Figure 1: curve on the torus starting at (3/2, 0, 0)
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Figure 2: neighborhoods in R2 on which φ is a homeomorphism

At this point, we need to take another neighborhood in T2 containing
φ(π/3, π) = (1/2)(cosπ/2, sinπ/3, 0) with a corresponding homeomorphic
neighborhood in R2 containing (π/3, π). A natural choice is (0, 2π)× (0, 2π)
as indicated in Figure 2(right). Notice the lift of this loop is not a loop.
Theorem 1 Given any loop γ in the torus T2 with γ(0) = (3/2, 0, 0), the lift
γ̂ : [0, 1] → R2 satisfies γ̂(1) = (2πk, 2πℓ) for some k, ℓ ∈ Z.

Theorem 2 If there is a homotopy of a loop γ to the identity loop id(t) ≡ x0,
then the lift of γ to a covering space must be a loop as well, and the lift γ̂
must also be homotopic to the identity loop in the covering space.

Here is a related theorem:

4



Theorem 3 If a space Y is path connected and locally path connected and Y
admits a simply connected covering space U , then U is uniquely determined
(up to homeomorphism).

A simply connected covering space U is called a universal covering
space. Remember that simply connected means the fundamental group
if trivial, or every loop can be contracted to a point. I want to state a
result on the existence of universal covering spaces, which is the last result
in Munkres’ book. We need one more definition. A space is semilocally
simply connected if every point has a simply connected neighborhood.
Most spaces we encounter satisfy the stronger condition that there is a basis
at each point consisting of simply connected open sets. Such spaces are
locally simply connected.

Theorem 4 If a space Y is path connected, locally path connected, and
semilocally simply connected, then there exists a (unique) universal cover-
ing space U for Y .

Thus the space R1 for S1 and R2 for T2 = S1 × S1 are the unique universal
covering spaces for the circle and the torus.

The fact that the lift of some loops on the circle or the torus to the
respective universal cover are not loops shows that these spaces are not simply
connected.

Exercise 5 Give examples of loops in T2 showing the map ψ : π1(T2) → Z2

by 〈γ〉 7→ (k, ℓ) where the lift γ̂ of γ satisfies γ̂(1) = (2πk, 2πℓ).

Theorem 5 ψ is a group isomorphism and

π1(T2) = π1(S1 × S1) = Z2 = Z× Z.
Theorem 6 π1(S1) = Z.

2 Fundamental group of spheres

Theorem 7 [Theorem 5.12 in Armstrong] If X = X1 ∪ X2 where X1

and X2 are simply connected and X1 ∩X2 is nonempty and path connected,
then X is simply connected.

The proof of this result uses Lebesgue’s covering lemma.

Corolloary 1 S2 (and S3, S4, etc.) are all simply connected.
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3 Fundamental group of a product space

Theorem 8 [Theorem 5.14 in Armstrong] If X and Y are path con-
nected, then X × Y is path connected and

π1(X × Y ) ≈ π1(X) × π1(Y ).

Example: π1(S1 × S1) = Z× Z.

4 Deformation retraction

Recall that a homotopy of a set is just a homotopy of the identity: X ⊂ U
and H : X × [0, 1] → U with

X(x, 0) = (x ) for x ∈ X.

A deformation retraction is a special case where U = X and we require
also that

H(x, 1) ∈ A for xinX

where A is some specified subset/subspace of X. Here is a rather amazing
result:

Theorem 9 If A is a deformation retraction of X, then π1(X) = π1(A).

Example:

H(t, θ, s) =

(

1 +
t(1 − s)

2
cos

θ

2

)

(cos θ, sin θ, 0) +
t(1 − s)

2
sin

θ

2
(0, 0, 1)

gives a deformation retraction of the Möbius strip M onto S1. Therefore,

π1(M) = Z.
Note: The situation where A is a deformation retraction of the space X is a
special case of two spaces having the same homotopy type. This notion of
having the same homotopy type is treated nicely in section 5.4 of Armstrong.
Two spaces of the same homotopy type have the same fundamental group.
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