\qquad

1. Let X and Y be topological spaces.
(a) (10 points) Give a precise definition of what it means for a function $f: X \rightarrow Y$ to be a homeomorphism. Note: For this definition, you may assume the notion of continuity is known; you do not need to define continuity.
(b) (10 points) Let $\mathbb{S}^{1}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$. Find a function $h: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ which satisfies
(i) h is a homeomorphism, and
(ii) $h(x, y) \neq(x, y)$ for all $(x, y) \in \mathbb{S}^{1}$.
(c) (5 points) Let $D=\left\{(x, y) \subset \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$. Find a homeomorphism $\bar{h}: D \rightarrow D$ such that

$$
\bar{h}_{\left.\right|_{\mathbb{S}^{1}}}=h
$$

where h is the homeomorphism you found in part (b) above. Hint: Take $\bar{h}(0,0)=$ $(0,0)$.
\qquad
2. (25 points) A topological space X is called Hausdorff if given x and y in X with $x \neq y$, there are disjoint open sets U and V with $x \in U$ and $y \in V$.
Show that if $f: X \rightarrow X$ is continuous and X is a Hausdorff space, then the fixed point set

$$
E=\{x \in X: f(x)=x\}
$$

is closed.
\qquad
3. A nonempty collection \mathcal{B} of open sets in a topological space (X, \mathcal{T}) is a base for \mathcal{T} if For each open set $U \in \mathcal{T}$ and each $x \in U$, there is some $B \in \mathcal{B}$ with

$$
x \in B \subset U
$$

Be careful: This is not the same as the definition given in the lecture.
(a) (10 points) Let X be a set, and let \mathcal{C} be a nonempty collection of subsets of X. Consider the two collections

$$
\mathcal{S}_{1}=\left\{\cup_{\alpha \in \Gamma} B_{\alpha}: B_{\alpha} \in \mathcal{C} \text { for } \alpha \in \Gamma, \text { and } \Gamma \text { is an indexing set }\right\}
$$

i.e., \mathcal{S}_{1} is the collection of all unions of sets in \mathcal{C}, and

$$
\mathcal{S}_{2}=\{U \subset X: \text { for each } x \in U, \text { there is some } B \in \mathcal{C} \text { with } x \in B \subset U\} .
$$

Determine the sets $\mathcal{S}_{1} \cup \mathcal{S}_{2}, \mathcal{S}_{1} \cap \mathcal{S}_{2}, \mathcal{S}_{1} \backslash \mathcal{S}_{2}$, and $\mathcal{S}_{2} \backslash \mathcal{S}_{1}$. Be careful: There are multiple cases to consider.
(b) (15 points) Let \mathcal{B} be a nonempty collection of subsets of a set X satisfying the following: (1) If $B_{j} \in \mathcal{B}$ for $j=1,2, \ldots, k$, then

$$
\cap_{j=1}^{k} B_{j} \in \mathcal{B}
$$

and (2)

$$
\cup_{B \in \mathcal{B}} B=X
$$

Identify a topology \mathcal{T} for which \mathcal{B} is a base.
\qquad
4. (a) (10 points) Define the term metric space.
(b) (15 points) Show that given two (nonempty) disjoint closed sets A_{1} and A_{2} in a metric space X, there are disjoint open sets U_{1} and U_{2} (in the metric topology) such that $A_{j} \subset U_{j}$ for $j=1,2$. Hint: You may use the fact that for each $x \notin A_{j}$ one has

$$
d\left(x, A_{j}\right)=\inf \left\{d(x, a): a \in A_{j}\right\}>0
$$

