- 1. Let X and Y be topological spaces.
 - (a) (10 points) Give a precise definition of what it means for a function $f: X \to Y$ to be a **homeomorphism**. Note: For this definition, you may assume the notion of continuity is known; you do not need to define continuity.

- (b) (10 points) Let $\mathbb{S}^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. Find a function $h : \mathbb{S}^1 \to \mathbb{S}^1$ which satisfies
 - (i) h is a homeomorphism, and
 - (ii) $h(x,y) \neq (x,y)$ for all $(x,y) \in \mathbb{S}^1$.

(c) (5 points) Let $D = \{(x, y) \subset \mathbb{R}^2 : x^2 + y^2 \leq 1\}$. Find a homeomorphism $\bar{h} : D \to D$ such that

$$\bar{h}_{|_{S^1}} = h$$

where h is the homeomorphism you found in part (b) above. Hint: Take $\bar{h}(0,0) = (0,0)$.

2. (25 points) A topological space X is called **Hausdorff** if given x and y in X with $x \neq y$, there are disjoint open sets U and V with $x \in U$ and $y \in V$.

Show that if $f:X\to X$ is continuous and X is a Hausdorff space, then the fixed point set

$$E = \{x \in X : f(x) = x\}$$

is closed.

Name and section:

3. A nonempty collection \mathcal{B} of open sets in a topological space (X, \mathcal{T}) is a **base** for \mathcal{T} if

For each open set $U \in \mathcal{T}$ and each $x \in U$, there is some $B \in \mathcal{B}$ with

$$x \in B \subset U.$$

Be careful: This is not the same as the definition given in the lecture.

(a) (10 points) Let X be a set, and let \mathcal{C} be a nonempty collection of subsets of X. Consider the two collections

 $\mathcal{S}_1 = \{ \cup_{\alpha \in \Gamma} B_\alpha : B_\alpha \in \mathcal{C} \text{ for } \alpha \in \Gamma, \text{ and } \Gamma \text{ is an indexing set} \},\$

i.e., S_1 is the collection of all unions of sets in C, and

$$S_2 = \{ U \subset X : \text{ for each } x \in U, \text{ there is some } B \in \mathcal{C} \text{ with } x \in B \subset U \}.$$

Determine the sets $S_1 \cup S_2$, $S_1 \cap S_2$, $S_1 \setminus S_2$, and $S_2 \setminus S_1$. Be careful: There are multiple cases to consider.

(b) (15 points) Let \mathcal{B} be a nonempty collection of subsets of a set X satisfying the following: (1) If $B_j \in \mathcal{B}$ for j = 1, 2, ..., k, then

$$\cap_{j=1}^k B_j \in \mathcal{B},$$

and (2)

$$\cup_{B\in\mathcal{B}}B=X.$$

Identify a topology \mathcal{T} for which \mathcal{B} is a base.

Name and section:

4. (a) (10 points) Define the term **metric space**.

(b) (15 points) Show that given two (nonempty) disjoint closed sets A_1 and A_2 in a metric space X, there are disjoint open sets U_1 and U_2 (in the metric topology) such that $A_j \subset U_j$ for j = 1, 2. Hint: You may use the fact that for each $x \notin A_j$ one has

 $d(x, A_j) = \inf\{d(x, a) : a \in A_j\} > 0.$