\qquad

1. (a) (10 points) State the definition of a topological space.

Armstrong's definition of an identification space of a topological space (X, \mathcal{T}) may be expressed as follows: An identification space of X is a partition \mathcal{P} of X with the topology

$$
\mathcal{T}_{\mathcal{P}}=\{V \subset \mathcal{P}:\{x \in X: \text { there is some } P \in V \text { with } x \in P\} \in \mathcal{T}\}
$$

(b) (10 points) Show that $\mathcal{I}_{\mathcal{P}}$ is a topology.
\qquad
(c) (10 points) Show $p: X \rightarrow \mathcal{P}$ by $p(x)=P$ where $x \in P$ is well-defined, continuous, and surjective.
(d) (10 points) Show $\mathcal{T}_{\mathcal{P}}=\left\{V \subset \mathcal{P}: p^{-1}(V) \in \mathcal{T}\right\}$.

Solution:

(a) This definition should be known by now. A topological space X is a set with a designated collection \mathcal{T} of subsets of X (called open sets) such that
(1) $\phi, X \in \mathcal{T}$,
(2) \mathcal{T} is closed under arbitrary unions: If $U_{\alpha} \in \mathcal{T}$ for $\alpha \in \Gamma$, then

$$
\cup_{\alpha \in \Gamma} U_{\alpha} \in \mathcal{T}
$$

(3) \mathcal{T} is closed under finite intersections: If $U_{1}, U_{2}, \ldots, U_{k} \in \mathcal{T}$, then

$$
\cap_{j=1}^{k} U_{j} \in \mathcal{T} .
$$

(b) (1) Taking $V=\phi$, we note $\phi \subset \mathcal{P}$, and $\{x \in X$: there is some $P \in \phi$ with $x \in P\}=$ $\phi \in \mathcal{T}$. Thus, $\phi \in \mathcal{T}_{\mathcal{P}}$.
Similarly, taking $V=\mathcal{P}$, since \mathcal{P} is a partition, $\{x \in X$: there is some $P \in \mathcal{P}$ with $x \in P\}$ $X \in \mathcal{T}$.
(2) Next, if $V_{\alpha} \in \mathcal{T}_{\mathcal{P}}$ for $\alpha \in \Gamma$, then

$$
\begin{aligned}
& \left\{x \in X: \text { there is some } P \in \cup_{\alpha \in \Gamma} V_{\alpha} \text { with } x \in P\right\} \\
& \qquad=\cup_{\alpha \in \Gamma}\left\{x \in X: \text { there is some } P \in V_{\alpha} \text { with } x \in P\right\} \in \mathcal{T} .
\end{aligned}
$$

Therefore, $\cup V_{\alpha} \in \mathcal{T}_{\mathcal{P}}$.
(3) Similarly, if $V_{j} \in \mathcal{T}_{\mathcal{P}}$ for $j=1,2, \ldots, k$, then

$$
\begin{aligned}
& \left\{x \in X: \text { there is some } P \in \cap_{j=1}^{k} V_{j} \text { with } x \in P\right\} \\
& \qquad=\cap_{j=1}^{k}\left\{x \in X \text { : there is some } P \in V_{j} \text { with } x \in P\right\} \in \mathcal{T} .
\end{aligned}
$$

Therefore, $\cap V_{j} \in \mathcal{T}_{\mathcal{P}}$.
As an alternative, the fact that $\mathcal{T}_{\mathcal{P}}$ is a topology is somewhat easier to verify in terms of the generalized projection $p: X \rightarrow \mathcal{P}$ given by $p(x)=P$ where $x \in P$. We show that p is well-defined below. But notice that

$$
\{x \in X: \text { there is some } P \in V \text { with } x \in P\}=p^{-1}(V)
$$

This is also verified in detail below. But assuming this form, we wish to show

$$
\mathcal{T}_{\mathcal{P}}=\left\{V \subset \mathcal{P}: p^{-1}(V) \in \mathcal{T}\right\} \quad \text { is a topology }
$$

\qquad

In fact, taking $\phi \subset \mathcal{P}$, we have $p^{-1}(\phi)=\phi \in \mathcal{T}$. Therefore, $\phi \in \mathcal{I}_{\mathcal{P}}$. Also, $p^{-1}(\mathcal{P})=X \in \mathcal{T}$, so $\mathcal{P} \in \mathcal{T}_{\mathcal{P}}$.
If $V_{\alpha} \in \mathcal{T}_{\mathcal{P}}$ for $\alpha \in \Gamma$, then $p^{-1}\left(V_{\alpha}\right) \in \mathcal{T}$ for $\alpha \in \Gamma$. Therefore, $\cup_{\alpha \in \Gamma} p^{-1}\left(V_{\alpha}\right) \in \mathcal{T}$. But $\cup_{\alpha \in \Gamma} p^{-1}\left(V_{\alpha}\right)=p^{-1}\left(\cup_{\alpha \in \Gamma} V_{\alpha}\right)$, so

$$
\cup_{\alpha \in \Gamma} V_{\alpha} \in \mathcal{I}_{\mathcal{P}}
$$

Similarly, if $V_{1}, \ldots, V_{k} \in \mathcal{I}_{\mathcal{P}}$, then $p^{-1}\left(V_{j}\right) \in \mathcal{T}$ for $j=1, \ldots, k$, so $\cap_{j=1}^{k} p^{-1}\left(V_{j}\right) \in$ \mathcal{T}. But $\cap_{j=1}^{k} p^{-1}\left(V_{j}\right)=p^{-1}\left(\cap_{j=1}^{k} V_{j}\right)$, so

$$
\cap_{j=1}^{k} V_{j} \in \mathcal{T}_{\mathcal{P}} .
$$

(c) Since \mathcal{P} is a partition, we know that for each $x \in X$, there is exactly one $P \in \mathcal{P}$ such that $x \in P$. Thus, p is well-defined.
Let V be open in \mathcal{P}. Then $\{x \in X$: there is some $P \in V$ with $x \in P\} \in \mathcal{T}$. But

$$
\begin{aligned}
\{x \in X: \text { there is some } P \in V \text { with } x \in P\} & =\{x \in X: p(x) \in V\} \\
& =p^{-1}(V) .
\end{aligned}
$$

Thus, $p^{-1}(V)$ is open in X, and p is continuous.
Finally, each set $P \in \mathcal{P}$ is a nonempty subset of X. Therefore, there is some $x \in X \cap P$. This means $p(x)=P$, so p is surjective.
(d) Our observation above that

$$
\begin{equation*}
\{x \in X: \text { there is some } P \in V \text { with } x \in P\}=p^{-1}(V) \tag{1}
\end{equation*}
$$

gives that

$$
\begin{aligned}
\mathcal{I}_{\mathcal{P}} & =\{V \subset \mathcal{P}:\{x \in X: \text { there is some } P \in V \text { with } x \in P\} \in \mathcal{T}\} \\
& =\left\{V \subset \mathcal{P}: p^{-1}(V) \in \mathcal{T}\right\} .
\end{aligned}
$$

Let us justify this observation in detail: If there is some $P \in V$ with $x \in P$, then $p(x)=P$, so $x \in p^{-1}(V)$. On the other hand, if $x \in p^{-1}(V)$, then $p(x) \in V \cap \mathcal{P}$. That is, $P=p(x)$ is a set in V with $x \in P$. This establishes (1).
\qquad
2. Armstong defines an identification map to be a continuous surjective function $q: X \rightarrow$ Y (from a topological space X onto a topological space Y) having the property that V is open in Y if and only if $q^{-1}(V)$ is open in X.
Consider $q: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by

$$
q(x, y)=\left(1+\frac{\cos y}{2}\right)(\cos x, \sin x, 0)+\frac{\sin y}{2}(0,0,1)
$$

and the set
$W=W\left(x_{0}, y_{0}, \epsilon\right)=\left\{\left(1+\frac{\cos y}{2}\right)(\cos x, \sin x, 0)+\frac{\sin y}{2}(0,0,1):\left|x-x_{0}\right|,\left|y-y_{0}\right|<\epsilon\right\}$
where $\epsilon \in(0, \pi / 10]$.
(a) (10 points) Draw $T^{2}=q\left(\mathbb{R}^{2}\right) \subset \mathbb{R}^{3}$ along with the subset $W(0,0, \pi / 10)$.
(b) (10 points) Show that if $q(x, y)=q\left(x_{0}, y_{0}\right)$, then there are some integers k and ℓ such that $x=x_{0}+2 \pi k$ and $y=y_{0}+2 \pi \ell$.
\qquad
(c) (10 points) Show that $q: \mathbb{R}^{2} \rightarrow T^{2}$ is an identification map. You may assume the sets $W\left(x_{0}, y_{0}, \epsilon\right)$ are open in T^{2}.
(d) (10 points) Consider $\gamma:[0,1] \rightarrow T^{2}$ by

$$
\gamma(t)=\left(1+\frac{\cos 6 \pi t}{2}\right)(\cos 2 \pi t, \sin 2 \pi t, 0)+\frac{\sin 6 \pi t}{2}(0,0,1)
$$

If $\Gamma:[0,1] \rightarrow \mathbb{R}^{2}$ is continuous and satisfies $\Gamma(0)=(0,0)$ and $q \circ \Gamma(t)=\gamma(t)$ for $0 \leq t \leq 1$, then find $\Gamma(1)$.

Solution:

(a)
(b) If

$$
\begin{aligned}
\left(1+\frac{\cos y}{2}\right) & (\cos x, \sin x, 0)+\frac{\sin y}{2}(0,0,1) \\
& =\left(1+\frac{\cos y_{0}}{2}\right)\left(\cos x_{0}, \sin x_{0}, 0\right)+\frac{\sin y_{0}}{2}(0,0,1)
\end{aligned}
$$

then

$$
\begin{aligned}
\left(1+\frac{\cos y}{2}\right) \cos x & =\left(1+\frac{\cos y_{0}}{2}\right) \cos x_{0} \\
\left(1+\frac{\cos y}{2}\right) \sin x & =\left(1+\frac{\cos y_{0}}{2}\right) \sin x_{0} \\
\sin y & =\sin y_{0} .
\end{aligned}
$$

\qquad

Since $1+\cos y / 2$ is nonzero, we see from the first two equations that $\cos x=$ $\cos x_{0}$ and $\sin x=\sin x_{0}$. This means $x=x_{0}+2 \pi k$ for some $k \in \mathbb{Z}$. On the other hand, since at least one of $\cos x=\cos x_{0}$ or $\sin x=\sin x_{0}$ is nonzero, we conclude that $\cos y=\cos y_{0}$ and (the last equation gives) $\sin y=\sin y_{0}$. Therefore, $y=y_{0}+2 \pi \ell$ for some $\ell \in \mathbb{Z}$.
(c) The function q is clearly continuous and onto. It remains to show that $\{V \subset$ $T^{2}: q^{-1}(V)$ is open in $\left.\mathbb{R}^{2}\right\}$ is (a subset of) the subspace topology on the torus $T^{2} \subset \mathbb{R}^{3}$.
Let $V \subset T^{2}$ such that $q^{-1}(V)$ is open in \mathbb{R}^{2}. Then for each $Q \in V$, there is a unique $\left(x_{0}, y_{0}\right) \in[0,2 \pi) \times[0,2 \pi)$ such that $q\left(x_{0}, y_{0}\right)=Q$. Because $q^{-1}(V)$ is open in \mathbb{R}^{2}, there is some $\epsilon>0$ (with $\left.\epsilon \leq \pi / 10\right)$ such that $U=\left(x_{0}-\epsilon, x_{0}+\right.$ $\epsilon) \times\left(y_{0}-\epsilon, y_{0}+\epsilon\right) \subset q^{-1}(V)$. Furthermore, if we restrict q to the set U, then q is one-to-one and $q(U)=W\left(x_{0}, y_{0}, \epsilon\right)$. This implies $q(U)$ is an open set in T^{2} with $Q \in q(U)=W\left(x_{0}, y_{0}, \epsilon\right) \subset V$. And this means V is open in T^{2}.
Therefore, $q: \mathbb{R}^{2} \rightarrow T^{2}$ is an identification map.
(d) The identification map q is one-to-one on each square $\left[x_{0}, x_{0}+2 \pi\right) \times\left[y_{0}, y_{0}+2 \pi\right) \subset$ \mathbb{R}^{2}. Thus, for $0 \leq t<1 / 3$, we have $0 \leq 6 \pi t<2 \pi$ and $0 \leq 2 \pi t<2 \pi / 3$, and

$$
\Gamma(t)=q_{[0,2 \pi) \times(0,2 \pi)}^{-1} \circ \gamma(t)=(2 \pi t, 6 \pi t) .
$$

Note $(2 \pi t, 6 \pi t)$ is a point in \mathbb{R}^{2} and not an interval. The image of Γ restricted to the interval $[0,1 / 3)$ is indicated in the figure with $\Gamma(1 / 3)=(2 \pi / 3,2 \pi)$.

$\overline{0} 1$
Repeating this reasoning for $1 / 3 \leq t<2 / 3$ and $2 / 3 \leq t<1$, we find

$$
\Gamma(1)=\lim _{t / 1} \Gamma(t)=(2 \pi, 6 \pi)
$$

Name and section: \qquad
3. Billl lives in \mathbb{R}^{4} and wears a knit cap having the topological shape of a familiar surface familiar to residents of \mathbb{R}^{4} that is. Billl's hat is homeomorphic to

$$
\Sigma=\left\{\left(x^{2}-y^{2}, x y, x z, y z\right):(x, y, z) \in \mathbb{S}^{2}\right\}
$$

Complete the following to determine the identity of the surface Σ.
(a) (10 points) Show that if $\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{S}^{2}$, then there are exactly two points $(x, y, z) \in$ \mathbb{S}^{2} such that

$$
\begin{align*}
x^{2}-y^{2} & =x_{0}^{2}-y_{0}^{2}, \tag{2}\\
x y & =x_{0} y_{0}, \tag{3}\\
x z & =x_{0} z_{0}, \tag{4}\\
y z & =y_{0} z_{0} . \tag{5}
\end{align*}
$$

Hint: Square the last two equations and subtract one from the other (then look at the first equation and consider several cases); there is more room on the next page).
(b) (10 points) Armstrong proves that if $q: X \rightarrow Y$ is an identification map and $\mathcal{P}=\left\{q^{-1}(y): y \in Y\right\}$, then Y is homemorphic to \mathcal{P} (considered as an identification space). Use this result to identify Σ topologically. Hint: What are the two solutions to the algebraic system in part (a)?

Solution:

(a) Following the hint, we see $\left(x^{2}-y^{2}\right) z^{2}=\left(x_{0}^{2}-y_{0}^{2}\right)^{2} z_{0}$. In view of the first equation, this implies $z^{2}=z_{0}^{2}$ unless $x^{2}-y^{2}=0=x_{0}^{2}-y_{0}^{2}$.
In the first case, if $z_{0} \neq 0$ then $z \neq 0$ and $z= \pm z_{0}$. Also, by (4) and (5) $x= \pm x_{0}$ and $y= \pm y_{0}$ (with the signs correlated). Thus, there are two solutions

$$
\begin{equation*}
(x, y, z)= \pm\left(x_{0}, y_{0}, z_{0}\right) \tag{6}
\end{equation*}
$$

Note that these are (always) both solutions, and since $\left(x_{0}, y_{0}, z_{0}\right) \neq(0,0,0)$, they are distinct. Therefore, we do not need to show existence, but only need to show there are at most two solutions.
Another general observation is that if we can show

$$
\begin{equation*}
x= \pm x_{0} \neq 0, \quad \text { or } \quad y= \pm y_{0} \neq 0, \quad \text { or } \quad z= \pm z_{0} \neq 0 \tag{7}
\end{equation*}
$$

then equations (3),(4), and (5) will imply all the equalities $x= \pm x_{0}, y= \pm y_{0}$ and $z= \pm z_{0}$ with correlated signs, and it follows that there are exactly two solutions (6).
Still in the first case, if $z_{0}=0$, then $z=0$, and we are reduced to equations (2) and (3) with $x^{2}+y^{2}=1=x_{0}^{2}+y_{0}^{2}$. Ignoring the 1 and adding equation (2) we get $x^{2}=x_{0}^{2}$ or $x= \pm x_{0}$. Subtracting equation (2) we get $y^{2}=y_{0}^{2}$ or $y= \pm y_{0}$. In this case, we cannot have $x=y=0$, so we must have one of the conditions of (7). This completes the first case.
In the second case, $x_{0}^{2}-y_{0}^{2}=0$ and $x_{0}= \pm y_{0}$. By (3) we conclude $x y= \pm x_{0}^{2}$. Since $|x|=|y|$, we conclude $y= \pm x$ (with correlated signs). Substituting $y= \pm x$ into $x y= \pm x_{0}^{2}$ and canceling the correlated signs, we get $x^{2}=x_{0}^{2}$. The reverse substitution gives $y^{2}=y_{0}^{2}$. If both of the quantities $x^{2}=x_{0}^{2}$ and $y^{2}=y_{0}^{2}$ vanish, then $z= \pm 1$ and $z_{0}= \pm 1$, so we are done. If one of the quantities $x^{2}=x_{0}^{2}$ and $y^{2}=y_{0}^{2}$ is nonzero, then we get one of the conditions of (7). Thus, in all cases, there are exactly two solutions as in (6).
(b) Take $X=\mathbb{S}^{2}$ and $Y=\Sigma$ with $q(x, y, z)=\left(x^{2}-y^{2}, x y, x z, y z\right)$. This function q is clearly continuous and onto. Furthermore, the domain of q is a compact space and $\Sigma \subset \mathbb{R}^{3}$ is a Hausdorff space. Therefore q is an identification map, and the theorem above gives that Σ is homeomorphic to the identification space \mathcal{P} on \mathbb{S}^{2} induced by q. We only need to identify the partition \mathcal{P} of \mathbb{S}^{2}. The previous part of this problem shows that for each $Q \in \Sigma$ we have

$$
q^{-1}(Q)=\left\{\left(x_{0}, y_{0}, z_{0}\right),-\left(x_{0}, y_{0}, z_{0}\right)\right\}=\left\{\left(x_{0}, y_{0}, z_{0}\right), \operatorname{an}\left(x_{0}, y_{0}, z_{0}\right)\right\}
$$

Name and section: \qquad
where $q\left(x_{0}, y_{0}, z_{0}\right)=Q$ and an is the antipodal map. This means Σ is homeomorphic to the quotent space of \mathbb{S}^{2} induced by the antipodal bijection, that is, Σ is (homemorphic to) the projective plane.

