
Math 4431, Exam 3: Ch. 4 Name and section:

1. (a) (10 points) State the definition of a topological space.

Armstrong’s definition of an identification space of a topological space (X, T )
may be expressed as follows: An identification space of X is a partition P of X
with the topology

TP = {V ⊂ P : {x ∈ X : there is some P ∈ V with x ∈ P} ∈ T }.

(b) (10 points) Show that TP is a topology.
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(c) (10 points) Show p : X → P by p(x) = P where x ∈ P is well-defined, continuous,
and surjective.

(d) (10 points) Show TP = {V ⊂ P : p−1(V ) ∈ T }.

Solution:

(a) This definition should be known by now. A topological space X is a set with a
designated collection T of subsets of X (called open sets) such that

(1) φ, X ∈ T ,

(2) T is closed under arbitrary unions: If Uα ∈ T for α ∈ Γ, then

∪α∈ΓUα ∈ T ,

(3) T is closed under finite intersections: If U1, U2, . . . , Uk ∈ T , then

∩k
j=1

Uj ∈ T .

(b) (1) Taking V = φ, we note φ ⊂ P, and {x ∈ X : there is some P ∈ φ with x ∈ P} =
φ ∈ T . Thus, φ ∈ TP .

Similarly, taking V = P, since P is a partition, {x ∈ X : there is some P ∈ P with x ∈ P} =
X ∈ T .

(2) Next, if Vα ∈ TP for α ∈ Γ, then

{x ∈ X : there is some P ∈ ∪α∈ΓVα with x ∈ P}

= ∪α∈Γ{x ∈ X : there is some P ∈ Vα with x ∈ P} ∈ T .

Therefore, ∪Vα ∈ TP .

(3) Similarly, if Vj ∈ TP for j = 1, 2, . . . , k, then

{x ∈ X : there is some P ∈ ∩k
j=1

Vj with x ∈ P}

= ∩k
j=1

{x ∈ X : there is some P ∈ Vj with x ∈ P} ∈ T .

Therefore, ∩Vj ∈ TP .

As an alternative, the fact that TP is a topology is somewhat easier to verify
in terms of the generalized projection p : X → P given by p(x) = P where
x ∈ P . We show that p is well-defined below. But notice that

{x ∈ X : there is some P ∈ V with x ∈ P} = p−1(V ).

This is also verified in detail below. But assuming this form, we wish to show

TP = {V ⊂ P : p−1(V ) ∈ T } is a topology.
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In fact, taking φ ⊂ P, we have p−1(φ) = φ ∈ T . Therefore, φ ∈ TP . Also,
p−1(P) = X ∈ T , so P ∈ TP .

If Vα ∈ TP for α ∈ Γ, then p−1(Vα) ∈ T for α ∈ Γ. Therefore, ∪α∈Γp−1(Vα) ∈ T .
But ∪α∈Γp−1(Vα) = p−1(∪α∈ΓVα), so

∪α∈ΓVα ∈ TP .

Similarly, if V1, . . . , Vk ∈ TP , then p−1(Vj) ∈ T for j = 1, . . . , k, so ∩k
j=1

p−1(Vj) ∈
T . But ∩k

j=1
p−1(Vj) = p−1(∩k

j=1
Vj), so

∩k
j=1

Vj ∈ TP .

(c) Since P is a partition, we know that for each x ∈ X, there is exactly one P ∈ P
such that x ∈ P . Thus, p is well-defined.

Let V be open in P. Then {x ∈ X : there is some P ∈ V with x ∈ P} ∈ T .
But

{x ∈ X : there is some P ∈ V with x ∈ P} = {x ∈ X : p(x) ∈ V }

= p−1(V ).

Thus, p−1(V ) is open in X, and p is continuous.

Finally, each set P ∈ P is a nonempty subset of X. Therefore, there is some
x ∈ X ∩ P . This means p(x) = P , so p is surjective.

(d) Our observation above that

{x ∈ X : there is some P ∈ V with x ∈ P} = p−1(V ). (1)

gives that

TP = {V ⊂ P : {x ∈ X : there is some P ∈ V with x ∈ P} ∈ T }

= {V ⊂ P : p−1(V ) ∈ T }.

Let us justify this observation in detail: If there is some P ∈ V with x ∈ P , then
p(x) = P , so x ∈ p−1(V ). On the other hand, if x ∈ p−1(V ), then p(x) ∈ V ∩P.
That is, P = p(x) is a set in V with x ∈ P . This establishes (1).
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2. Armstong defines an identification map to be a continuous surjective function q : X ։

Y (from a topological space X onto a topological space Y ) having the property that V
is open in Y if and only if q−1(V ) is open in X.

Consider q : R2 → R3 by

q(x, y) =
(

1 +
cos y

2

)

(cos x, sin x, 0) +
sin y

2
(0, 0, 1)

and the set

W = W (x0, y0, ǫ) =

{

(

1 +
cos y

2

)

(cos x, sin x, 0) +
sin y

2
(0, 0, 1) : |x − x0|, |y − y0| < ǫ

}

where ǫ ∈ (0, π/10].

(a) (10 points) Draw T 2 = q(R2) ⊂ R3 along with the subset W (0, 0, π/10).

(b) (10 points) Show that if q(x, y) = q(x0, y0), then there are some integers k and ℓ
such that x = x0 + 2πk and y = y0 + 2πℓ.
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(c) (10 points) Show that q : R2 → T 2 is an identification map. You may assume the
sets W (x0, y0, ǫ) are open in T 2.

(d) (10 points) Consider γ : [0, 1] → T 2 by

γ(t) =

(

1 +
cos 6πt

2

)

(cos 2πt, sin 2πt, 0) +
sin 6πt

2
(0, 0, 1).

If Γ : [0, 1] → R2 is continuous and satisfies Γ(0) = (0, 0) and q ◦ Γ(t) = γ(t) for
0 ≤ t ≤ 1, then find Γ(1).

Solution:

(a)

(b) If

(

1 +
cos y

2

)

(cos x, sin x, 0) +
sin y

2
(0, 0, 1)

=
(

1 +
cos y0

2

)

(cos x0, sin x0, 0) +
sin y0

2
(0, 0, 1)

then
(

1 +
cos y

2

)

cos x =
(

1 +
cos y0

2

)

cos x0

(

1 +
cos y

2

)

sin x =
(

1 +
cos y0

2

)

sin x0

sin y = sin y0.
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Since 1 + cos y/2 is nonzero, we see from the first two equations that cos x =
cos x0 and sin x = sin x0. This means x = x0 + 2πk for some k ∈ Z. On the
other hand, since at least one of cosx = cos x0 or sin x = sin x0 is nonzero,
we conclude that cos y = cos y0 and (the last equation gives) sin y = sin y0.
Therefore, y = y0 + 2πℓ for some ℓ ∈ Z.

(c) The function q is clearly continuous and onto. It remains to show that {V ⊂
T 2 : q−1(V ) is open in R2} is (a subset of) the subspace topology on the torus
T 2 ⊂ R3.

Let V ⊂ T 2 such that q−1(V ) is open in R2. Then for each Q ∈ V , there is a
unique (x0, y0) ∈ [0, 2π) × [0, 2π) such that q(x0, y0) = Q. Because q−1(V ) is
open in R2, there is some ǫ > 0 (with ǫ ≤ π/10) such that U = (x0 − ǫ, x0 +
ǫ) × (y0 − ǫ, y0 + ǫ) ⊂ q−1(V ). Furthermore, if we restrict q to the set U , then
q is one-to-one and q(U) = W (x0, y0, ǫ). This implies q(U) is an open set in T 2

with Q ∈ q(U) = W (x0, y0, ǫ) ⊂ V . And this means V is open in T 2.

Therefore, q : R2 → T 2 is an identification map.

(d) The identification map q is one-to-one on each square [x0, x0+2π)×[y0, y0+2π) ⊂R2. Thus, for 0 ≤ t < 1/3, we have 0 ≤ 6πt < 2π and 0 ≤ 2πt < 2π/3, and

Γ(t) = q−1
∣

∣

[0,2π)×[0,2π)

◦ γ(t) = (2πt, 6πt).

Note (2πt, 6πt) is a point in R2 and not an interval. The image of Γ restricted
to the interval [0, 1/3) is indicated in the figure with Γ(1/3) = (2π/3, 2π).

Repeating this reasoning for 1/3 ≤ t < 2/3 and 2/3 ≤ t < 1, we find

Γ(1) = lim
tր1

Γ(t) = (2π, 6π).
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3. Billl lives in R4 and wears a knit cap having the topological shape of a familiar surface—
familiar to residents of R4 that is. Billl’s hat is homeomorphic to

Σ = {(x2 − y2, xy, xz, yz) : (x, y, z) ∈ S2}.

Complete the following to determine the identity of the surface Σ.

(a) (10 points) Show that if (x0, y0, z0) ∈ S2, then there are exactly two points (x, y, z) ∈S2 such that

x2 − y2 = x2

0
− y2

0
, (2)

xy = x0y0, (3)

xz = x0z0, (4)

yz = y0z0. (5)

Hint: Square the last two equations and subtract one from the other (then look at
the first equation and consider several cases); there is more room on the next page).
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(b) (10 points) Armstrong proves that if q : X → Y is an identification map and
P = {q−1(y) : y ∈ Y }, then Y is homemorphic to P (considered as an identification
space). Use this result to identify Σ topologically. Hint: What are the two solutions
to the algebraic system in part (a)?

Solution:

(a) Following the hint, we see (x2 − y2)z2 = (x2

0
− y2

0
)2z0. In view of the first

equation, this implies z2 = z2

0
unless x2 − y2 = 0 = x2

0
− y2

0
.

In the first case, if z0 6= 0 then z 6= 0 and z = ±z0. Also, by (4) and (5) x = ±x0

and y = ±y0 (with the signs correlated). Thus, there are two solutions

(x, y, z) = ±(x0, y0, z0). (6)

Note that these are (always) both solutions, and since (x0, y0, z0) 6= (0, 0, 0),
they are distinct. Therefore, we do not need to show existence, but only need
to show there are at most two solutions.

Another general observation is that if we can show

x = ±x0 6= 0, or y = ±y0 6= 0, or z = ±z0 6= 0, (7)

then equations (3),(4), and (5) will imply all the equalities x = ±x0, y = ±y0

and z = ±z0 with correlated signs, and it follows that there are exactly two
solutions (6).

Still in the first case, if z0 = 0, then z = 0, and we are reduced to equations (2)
and (3) with x2 + y2 = 1 = x2

0
+ y2

0
. Ignoring the 1 and adding equation (2) we

get x2 = x2

0
or x = ±x0. Subtracting equation (2) we get y2 = y2

0
or y = ±y0.

In this case, we cannot have x = y = 0, so we must have one of the conditions
of (7). This completes the first case.

In the second case, x2

0
− y2

0
= 0 and x0 = ±y0. By (3) we conclude xy = ±x2

0
.

Since |x| = |y|, we conclude y = ±x (with correlated signs). Substituting
y = ±x into xy = ±x2

0
and canceling the correlated signs, we get x2 = x2

0
. The

reverse substitution gives y2 = y2

0
. If both of the quantities x2 = x2

0
and y2 = y2

0

vanish, then z = ±1 and z0 = ±1, so we are done. If one of the quantities
x2 = x2

0
and y2 = y2

0
is nonzero, then we get one of the conditions of (7). Thus,

in all cases, there are exactly two solutions as in (6).

(b) Take X = S2 and Y = Σ with q(x, y, z) = (x2 − y2, xy, xz, yz). This function q
is clearly continuous and onto. Furthermore, the domain of q is a compact space
and Σ ⊂ R3 is a Hausdorff space. Therefore q is an identification map, and the
theorem above gives that Σ is homeomorphic to the identification space P onS2 induced by q. We only need to identify the partition P of S2. The previous
part of this problem shows that for each Q ∈ Σ we have

q−1(Q) = {(x0, y0, z0),−(x0, y0, z0)} = {(x0, y0, z0), an(x0, y0, z0)}
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where q(x0, y0, z0) = Q and an is the antipodal map. This means Σ is homeo-
morphic to the quotent space of S2 induced by the antipodal bijection, that is,
Σ is (homemorphic to) the projective plane.


