Math 4431, Final Exam (practice)

Name/Section:

1. (20 points) (Topologist's Isoperimetric Inequality) The isoperimetric inequality for subsets of \mathbb{R}^n relates the *n*-dimensional measure of a measureable set $A \subset \mathbb{R}^n$ to the n-1dimensional measure of it boundary:

$$\frac{[\mathcal{H}^{n-1}(\partial A)]^n}{[m_n(A)]^{n-1}} \ge \frac{[\mathcal{H}^{n-1}(\partial B_1)]^n}{[m_n(B_1)]^{n-1}}$$

where m_n is *n*-dimensional Lebesgue measure on \mathbb{R}^n , \mathcal{H}^{n-1} is n-1-dimensional Hausdorff measure on \mathbb{R}^n , and B_1 is any ball in \mathbb{R}^n of unit radius. For example, if n = 2, then this says the length of the boundary squared divided by the area of a set A is at least 4π .

Prove the following inequality for any subset A of a topological space X:

$$\frac{[\nu(\partial A)]^q}{[\mu(A)]^p} \ge \frac{[\nu(\partial \overline{A})]^q}{[\mu(\overline{A})]^p} \tag{1}$$

where \overline{A} is the closure of A, $\mu : 2^X \to [0, \infty]$ and $\nu : 2^X \to [0, \infty]$ are any nonnegative **monotone set functions**, and p and q are any nonnegative real numbers. (A **monotone set function** μ is one for which $\mu(A) \leq \mu(B)$ whenever $A \subset B$.)

Solution: We first claim that

$$\partial \overline{A} \subset \partial A. \tag{2}$$

To see this, let $x \in \partial \overline{A}$. Then for every open set U with $x \in U$ we have some $\xi \in U \cap \overline{A}$ and some $\eta \in U \cap (\overline{A})^c$. Since $A \subset \overline{A}$, we know $\eta \in U \cap A^c$. Also, since U is an open set containing ξ and $\xi \in \overline{A}$, there is some $a \in A \cap U$. This means $x \in \partial A$, and we have established (2).

Since ν is monotone we get

$$\nu(\partial A) \ge \nu(\partial \overline{A}). \tag{3}$$

On the other hand, it is clear that $A \subset \overline{A}$, so by the monotonicity of μ we have

$$\mu(A) \le \mu(\overline{A}). \tag{4}$$

Combining (3) and (4) with some arithmetic of the extended real numbers, we get (1).

- 2. To the left of each term write the number of the appropriate definition/explanation.
 - (a) (2 points) connected
 - (b) (2 points) compact
 - (c) (2 points) locally connected
 - (d) (2 points) locally compact
 - (e) (2 points) path connected
 - (f) (2 points) locally path connected
 - (g) (2 points) product space
 - (h) (2 points) closure
 - (i) (2 points) open
 - (j) (2 points) closed
 - 1. an element of the topology
 - 2. the set of all functions

$$f:\Gamma\to\bigcup_{\alpha\in\Gamma}X_\alpha$$

where $\{X_{\alpha}\}$ is a collection of topological spaces with index set Γ and $f(\alpha) \in X_{\alpha}$ 3. for a set A,

$$\bigcap_{A \cap U = \phi, \ U \ \text{open}} U^c$$

- 4. for each point x, there is an open set U and a compact set K such that $x \in U \subset K$
- 5. whenever $X = A \cup B$, then either $\overline{A} \cap B \neq \phi$ or $A \cap \overline{B} \neq \phi$
- 6. for each pair (a, b), there is a continuous function f defined on an interval [0, 1] such that f(0) = a and f(1) = b
- 7. when the set $\cap A_{\alpha}$ is an intersection of closed sets and $\cap A_{\alpha} \cap A = \phi$, then one can find a finite collection $\{\alpha_1, \alpha_2, \ldots, \alpha_k\}$ for which

$$\bigcap_{j=1}^k A_{\alpha_j} \cap A = \phi$$

- 8. for each x and each open set U with $x \in U$, there is a path connected set C and an open set W with $x \in W \subset C \subset U$
- 9. A^c is an open neighborhood
- 10. whenever U is open and $x \in U$, there is an open set W with $x \in W \subset U$ and every nonempty proper open subset of W has nonopen complement

Solution:	
(a) 5	
(b) 7	
(c) 10	
(d) 4	
(e) 6	
(f) 8	
(g) 2	
(h) 3	
(i) 1	
(j) 9	

- 3. To the left of each term write the number of the appropriate definition/explanation.
 - (a) (2 points) second countable
 - (b) (2 points) Hausdorff
 - (c) (2 points) loop
 - (d) (2 points) homotopy
 - (e) (2 points) fundamental group
 - (f) (2 points) deformation retraction
 - (g) (2 points) group
 - (h) (2 points) continuity
 - (i) (2 points) identification map
 - (j) (2 points) topologist's sine curve
 - 1. a homotopy of a set into itself
 - 2. associative loop concatenation in a path connected space
 - 3. a continuous function such that when the inverse image of a set is open, then the set is also open
 - 4. having a basis of open sets U_1, U_2, U_3, \ldots
 - 5. a function f defined on an interval [0, 1] and satisfying f(0) = f(1)
 - 6. example of a connected space whose closure is not path connected
 - 7. a continuous function on the cross product of a space with the interval [0, 1]
 - 8. the inverse image of an open set is open
 - 9. having an associative operation on a set that contains an identity element and inverses
 - 10. being able to separate points by open sets

Solution:			
(a) 4			
(b) 10			
(c) 5			
(d) 7			
(e) 2			
(f) 1			

Name and section: _____

(g) 9			
(h) 8			
(i) 3			
(j) 6			

- 4. Let $X = \mathbb{R}^2 \setminus \{(0,0)\}.$
 - (a) (10 points) Identify the fundamental group of X and give explicit representatives (loops) for each element of the fundamental group.

(b) (10 points) Take one of your loop representatives γ and a representative η of $\langle \gamma \rangle^{-1}$, and give an explicit homotopy of the **concatenation** $\eta \triangleleft \gamma$ to the identity. Here, the **concatenation** is defined by

$$\eta \triangleleft \gamma(t) = \begin{cases} \gamma(2t), & 0 \le t \le 1/2\\ \eta(2t-1), & 1/2 \le t \le 1 \end{cases}$$

Solution:

(a) The fundamental group is \mathbb{Z} . Let $\gamma : [0,1] \to \mathbb{R}^2 \setminus \{(0,0)\}$ by $\gamma(t) = (\cos 2\pi t, \sin 2\pi t)$. Denote by γ^j the loop γ concatenated with itself j times for $j = 2, 3, 4, \ldots$. The constant loop $id(t) \equiv (1,0)$ represents the identity in the fundamental group. The remaining elements are the inverses of γ^j :

$$\gamma^{-1} = -\gamma : [0,1] \to \mathbb{R}^2 \setminus \{(0,0)\} \text{ by } \gamma^{-1}(t) = (\cos 2\pi t, -\sin 2\pi t),$$

and let γ^{-j} be γ^{-1} concatenated with itself j times for $j = 2, 3, 4, \ldots$ The mapping $\langle \gamma^j \rangle \mapsto j$ is an isomorphism of $\pi_1(X) \to \mathbb{Z}$.

(b) Take $\gamma(t) = (\cos 2\pi t, \sin 2\pi t)$ and $\eta(t) = \gamma^{-1}(t) = \gamma(1-t) = (\cos 2\pi t, -\sin 2\pi t)$. Define

$$H(t,s) = \begin{cases} \gamma(2(1-s)t), & 0 \le t \le 1/2\\ \eta((1-s)(2t-1)+s), & 1/2 \le t \le 1. \end{cases}$$

Notice first that the values assigned to H for t = 1/2 are $\gamma(1-s) = \eta(s)$. Thus, H is well-defined and continuous by the gluing lemma. Also, $H(0,s) = \gamma(0) \equiv (1,0)$ and $H(1,s) = \eta(1) \equiv (1,0)$. Finally, $H(t,0) \equiv \eta \triangleleft \gamma$ and $H(t,1) \equiv (1,0)$. Thus, H is a homotopy of $\eta \triangleleft \gamma$ to the identity (loop).

5. (20 points) Recall that X is said to be **locally compact** if for each point $x \in X$, there is an open set U and a compact set K such that $x \in U \subset K$. Assume X is locally compact and Hausdorff. Show that given any point $x \in X$ and any open set U with $x \in U$, there is a compact set K and an open set W with $x \in W \subset K \subset U$.

Solution: Because X is locally compact, we can start with an open set U_0 and a compact set K_0 such that $x \in U_0 \subset K_0$. We can, of course, take $W_0 = U \cap U_0$ which is an open set with $x \in W_0 \subset K_0$. We have no reason to believe, however, that $K_0 \subset U$.

Because X is Hausdorff, we do know K_0 is closed. And furthermore, if we had another closed subset C of U, then $K_0 \cap C$ would be a compact subset of U. (Closed subsets of compact sets are always compact.)

Consider $\{x\}$ and U^c . These are both closed sets. In particular, $K_1 = K_0 \cap U^c$ is compact. Of course, this intersection K_1 might be empty, but if it is, that means $K_0 \subset U$ and we're done because we can just take $W = U_0 \subset K = K_0 \subset U$.

Otherwise, for each point ξ in K_1 , there are disjoint open sets U_{ξ} and V_{ξ} with $x \in U_{\xi}$ and $\xi \in V_{\xi}$. Taking a finite subcover of K_1 consisting of a finite collection of the V_{ξ} , we get disjoint open sets U_1 (the intersection of the corresponding U_{ξ}) and V (the union of the finitely many V_{ξ}) with $x \in U_1$ and $K_1 \subset V$.

This last paragraph is just a proof that you can separate a point from a compact set in a Hausdorff space. That fact can be quoted if you remember it.

In any case, $K = K_0 \cap V^c$ is our compact set, and $W = U_0 \cap U_1$ is our open set. There are, perhaps, some things to check. First of all K is compact because, as mentioned, K_0 and V^c are closed making K a closed subset of the compact set K_0 . (A closed subset of a compact set is always compact.) The set W is also open and nonempty because $x \in W$. Also, since $U_0 \subset K_0$ and $U_1 \subset V^c$, we know $W \subset K$. It remains to show $K \subset U$. But remember that if $\xi \in K$, then $\xi \in V^c$ and this means, $\xi \notin K_1 = K_0 \cap U^c$. Since we know $\xi \in K_0$, it must be that $\xi \notin U^c$, i.e., $\xi \in U$. This completes the solution.