1. (product space with finitely many factors) Let X_{1} and X_{2} be topological spaces and for $A_{j} \subset X_{j}, j=1,2$, define

$$
A_{1} \times A_{2}=\left\{\left(x_{1}, x_{2}\right): x_{j} \in A_{j}, j=1,2\right\} .
$$

Let

$$
\mathcal{B}=\left\{U_{1} \times U_{2}: U_{j} \text { is an open set in } X_{j}, j=1,2\right\} .
$$

(a) (5 points) Show that

$$
\bigcup_{B \in \mathcal{B}} B=X_{1} \times X_{2} \quad \text { and } \quad \bigcap_{j=1}^{k} B_{j} \in \mathcal{B} \quad \text { whenever } B_{j} \in \mathcal{B}, j=1, \ldots, k
$$

(b) (5 points) Show that

$$
\mathcal{P}=\left\{\bigcup_{\alpha \in \Gamma} B_{\alpha}: B_{\alpha} \in \mathcal{B} \text { for } \alpha \text { in any index set } \Gamma\right\}
$$

is a topology on $X_{1} \times X_{2}$. (\mathcal{P} is, of course, called the product topology).
\qquad
(c) (5 points) (Theorem 3.12) Consider $p_{j}: X_{1} \times X_{2} \rightarrow X_{j}$ for $j=1,2$ by $p_{j}\left(x_{1}, x_{2}\right)=$ x_{j}. Show p_{1} and p_{2} are continuous.
(d) (5 points) Show that if \mathcal{T} is a topology on $X_{1} \times X_{2}$ (not necessarily the product topology \mathcal{P}) and p_{1} and p_{2} are continuous with respect to \mathcal{T}, then $\mathcal{P} \subset \mathcal{T}$.
(e) (5 points) Give an example of a topology on $\mathbb{R} \times \mathbb{R}$ with respect to which p_{1} : $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is not continuous.
(f) (5 points) Give an example of a topology \mathcal{T} which is on $\mathbb{R} \times \mathbb{R}$ which is different from the Euclidean topology but with respect to which $p_{j}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous for $j=1,2$.

Solution:

(a) $X_{1} \times X_{2} \in \mathcal{B}$, and $\cap\left(U_{1 j} \times U_{2 j}\right)=\left(\cap U_{1 j}\right) \times\left(\cap U_{2 j}\right)$.
(b) $\phi=\phi \times \phi$ and $X_{1} \times X_{2}$ are basic open sets, so $\phi, X_{1} \times X_{2} \in \mathcal{P}$.

$$
\begin{gathered}
\bigcup_{\beta}\left[\bigcup_{\alpha}\left(U_{1 \alpha}^{\beta} \times U_{2 \alpha}^{\beta}\right)\right]=\bigcup_{\alpha, \beta}\left(U_{1 \alpha}^{\beta} \times U_{2 \alpha}^{\beta}\right) \\
\bigcup_{j}\left[\bigcup_{\alpha}\left(U_{1 \alpha}^{j} \times U_{2 \alpha}^{j}\right)\right]=\bigcup_{\alpha}\left[\left(\bigcap_{j} U_{1 \alpha}^{j}\right) \times\left(\bigcap_{j} U_{2 \alpha}^{j}\right)\right] .
\end{gathered}
$$

(c) $p_{1}^{-1}\left(U_{1}\right)=U_{1} \times X_{2}$ is open when $U_{1} \subset X_{1}$ is open.
(d) Here we know $U_{1} \times X_{2}, X_{1} \times U_{2} \in \mathcal{T}$. Therefore,

$$
\left(U_{1} \times X_{2}\right) \cap\left(X_{1} \times U_{2}\right)=U_{1} \times U_{2} \in \mathcal{T}
$$

Therefore, $\mathcal{B} \subset \mathcal{T}$ and $\mathcal{P} \subset \mathcal{T}$.
(e) We know the topology must be smaller than \mathcal{P}. As long as there is some open set $U_{1} \neq \phi, X_{1}$ in X_{1}, then the topology

$$
\left\{X_{1} \times U_{2}: U_{2} \text { is open in } X_{2}\right\}
$$

should be an example. In particular, this should work for $X_{1}=X_{2}=\mathbb{R}$.
(f) Now, we know the topology should be bigger than \mathcal{P}. The discrete topology $2^{X_{1} \times X_{2}}$ will be different from \mathcal{P} as long as X_{1} and X_{2} do not both have discrete topologies. This, of course, works for \mathbb{R}^{2}.
\qquad
2. Let X_{1} and X_{2} be topological spaces.
(a) (10 points) (Theorem 3.14) If X_{1} and X_{2} are Hausdorff, then show $X_{1} \times X_{2}$ is Hausdorff.
(b) (10 points) (Theorem 3.15) If $X_{1} \times X_{2}$ is compact, then show X_{1} and X_{2} are compact.

Solution:

(a) Given $\left(x_{1}, x_{2}\right) \neq\left(\xi_{1}, \xi_{2}\right)$ in $X_{1} \times X_{2}$, we have either $x_{1} \neq \xi_{1}$ in X_{1} or or $x_{2} \neq \xi_{2}$ in X_{2}. Take the first case. Then there are disjoint open sets U_{1} and V_{1} in X_{1} with $x_{1} \in U_{1}$ and $\xi_{1} \in V_{1}$. The sets $U_{1} \times X_{2}$ and $V_{1} \times X_{2}$ are then disjoint open sets in $X_{1} \times X_{2}$ separating $\left(x_{1}, x_{2}\right)$ and $\left(\xi_{1}, \xi_{2}\right)$. The second case is similar.
(b) The projections p_{1} and p_{2} are continuous and the continuous image of a compact set is compact. Therefore, $X_{1}=p_{1}\left(X_{1} \times X_{2}\right)$ is compact. $X_{2}=p_{2}\left(X_{1} \times X_{2}\right)$ is compact for the same reason.
\qquad
3. (Theorem 3.20) Let us take Armstrong's definition of a connected space: X is connected if whenever $X=X_{1} \cup X_{2}$ and $X_{1}, X_{2} \neq \phi$, then either

$$
\bar{X}_{1} \cap X_{2} \neq \phi \quad \text { or } \quad X_{1} \cap \bar{X}_{2} \neq \phi
$$

(a) (5 points) Show that if $A \subset X$ is connected, then whenever $A \subset A_{1} \cup A_{2}$ and $A \cap A_{j} \neq \phi, j=1,2$, then either

$$
\bar{A}_{1} \cap A_{2} \neq \phi \quad \text { or } \quad A_{1} \cap \bar{A}_{2} \neq \phi .
$$

(b) (5 points) Show that if whenever $A \subset A_{1} \cup A_{2}$ and $A \cap A_{j} \neq \phi, j=1,2$, then either

$$
\bar{A}_{1} \cap A_{2} \neq \phi \quad \text { or } \quad A_{1} \cap \bar{A}_{2} \neq \phi,
$$

then A is connected.
(c) (5 points) Show that if A is a connected subset of X and $A \subset U_{1} \cup U_{2}$ where U_{1} and U_{2} are disjoint open sets, then either

$$
A \subset U_{1} \quad \text { or } \quad A \subset U_{2}
$$

(d) (5 points) (Corollary 3.24) Show that if A is a connected subspace of X and

$$
A \subset S \subset \bar{A}
$$

then S is connected.

Solution:

(a) If $A \subset A_{1} \cup A_{2}$, then we know $A=\left(A_{1} \cap A\right) \cup\left(A_{2} \cap A\right)$. By the definition of what it means for A to be connected, we have

$$
\overline{A \cap A_{1}} \cap A_{2} \neq \phi \quad \text { or } \quad A_{1} \cap \overline{A \cap A_{2}} \neq \phi
$$

In the first case, since

$$
\overline{A \cap A_{1}} \subset \bar{A}_{1},
$$

we must have $\bar{A}_{1} \cap A_{2} \neq \phi$. The second case implies $A_{1} \cap \bar{A}_{2} \neq \phi$.
(b) Again, if $A \subset A_{1} \cup A_{2}$, then $A=\left(A_{1} \cap A\right) \cup\left(A_{2} \cap A\right)$, and the assumed conditions are just the definition of what it means for A to be connected (as a space).
(c) If U_{1} and U_{2} are disjoint open sets, then $\bar{U}_{1} \cap U_{2}=\phi$. This is because if $x \in U_{2}$, then U_{2} is an open set disjoint from U_{1}, hence $x \notin \bar{U}_{1}$. Similarly, $U_{1} \cap \bar{U}_{2}=\phi$. Now, if we apply part (a) to $A \subset U_{1} \cup U_{2}$, we must have $A \cap U_{1}=\phi$ or $A \cap U_{2}=\phi$. In the first case, $A \subset U_{2}$ and in the second case $A \subset U_{1}$.
The converse of the assertion in part (c), namely:
If $S \subset U_{1} \cup U_{2}$ where U_{1} and U_{2} are disjoint open sets always implies $S \subset U_{1}$ or $S \subset U_{2}$, then S is connected.
is false.
To see this, consider $\mathcal{T}=\{\phi,\{b\},\{a, b\},\{b, c\},\{a, b, c\}\}$. This is a topology on $X=\{a, b, c\}$. The set $S=\{a, c\}$ satisfies the condition of the converse of (c). This is because the only pair of disjoint open sets whose union contains S is the pair consisting of ϕ and $X=\{a, b, c\}$. On the other hand, S is not connected because $S \cap\{a, b\}=\{a\}$ and $S \cap\{b, c\}=\{c\}$ are open relative to S.
(d) Assume S is not connected. Then there are sets S_{1} and S_{2} with $S \subset S_{1} \cup S_{2}$,

$$
\begin{equation*}
S \cap S_{j} \neq \phi, \quad j=1,2 \tag{1}
\end{equation*}
$$

\qquad
and

$$
\bar{S}_{1} \cap S_{2}=\phi=S_{1} \cap \bar{S}_{2}
$$

Since $A \subset S \subset S_{1} \cup S_{2}$ and A is connected, we must have $A \subset S_{1}$ or $A \subset S_{2}$. In the first case, $\bar{A} \subset \bar{S}_{1}$ and, consequently, $\bar{A} \cap S_{2}=\phi$. But since $S \subset \bar{A}$, this means $S \cap S_{2}=\phi$ which contradicts (1). In the second case, we obtain a similar contradiction since then $S \subset \bar{A} \subset \bar{S}_{2}$, and it follows that $S \cap S_{1}=\phi$.
Since we have contradictions in all cases, our assumption that S is not connected must be bogus. S must be connected.
\qquad
4. A topological space X is locally connected if for each $x \in X$ and each open set U with $x \in U$, there is some open set U_{0} and some connected set C with

$$
x \in U_{0} \subset C \subset U
$$

(a) (10 points) Show that the homeomorphic image of a locally connected space is locally connected.
(b) (10 points) Show that if X is locally connected, then for each $x \in X$ and each open set U with $x \in U$, there is an open connected set U_{0} with

$$
x \in U_{0} \subset U
$$

Solution:

(a) If $h: X \rightarrow Y$ and X is locally connected, then given any point $y=h(x) \in Y$ and an open set V with $y \in V$, we have a point $x \in X$, and we want to apply the definition of local connectedness of X at x. We can take the open set $U=$ $h^{-1}(V)$, and we get an open set U_{0} and a connected set C with $x \subset U_{0} \subset C \subset U$. Then we have an open set $h\left(U_{0}\right)$ and a connected set $h(C)$ with

$$
y \in h\left(U_{0}\right) \subset h(C) \subset V .
$$

This means $h(X)$ is locally connected.
(b) We cannot take U_{0} directly from the definition, because U_{0} may not be connected. What we can do is take a set U_{1} from the definition, and we'll take the connected set C too, with

$$
x \in U_{1} \subset C \subset U
$$

Now, we can take U_{0} to be the component of U_{1} containing x. Let us denote this set $U_{0}=\operatorname{comp}_{x}\left(U_{1}\right)$. We need to show U_{0} is open. The component $\operatorname{comp}_{x}\left(U_{1}\right)$ is the union of all connected subsets of U_{1} containing x, and it follows from this that U_{0} is a connected subset of U_{1}. (At this point, you might be tempted to take U_{0} as the union of all open connected subsets of U_{1}, but you wouldn't yet know there are any such sets, so you'd still be stuck.) The good news is that all we have to show is that U_{0} is open.

Take a point $\xi \in U_{0}$. We know then, since X is locally connected, that there is an open set U_{ξ} and a connected set C_{ξ} with

$$
\xi \in U_{\xi} \subset C_{\xi} \subset U_{1} .
$$

Since C_{ξ} is connected with $\xi \in C_{\xi} \subset U_{1}$, and $\operatorname{comp}_{\xi}\left(U_{1}\right)$ is the union of all such sets, we know

$$
\xi \in C_{\xi} \subset \operatorname{comp}_{\xi}\left(U_{1}\right)
$$

\qquad

On the other hand, $\xi \in \operatorname{comp}_{x}\left(U_{1}\right)$ which is also a connected subset of U_{1} containing ξ. Therefore, $\operatorname{comp}_{x}\left(U_{1}\right) \subset \operatorname{comp}_{\xi}\left(U_{1}\right)$. In particular, $x \in \operatorname{comp}_{\xi}\left(U_{1}\right)$. It follows in the same way that $\operatorname{comp}_{\xi}\left(U_{1}\right) \subset \operatorname{comp}_{x}\left(U_{1}\right)$. In particular,

$$
\begin{equation*}
\xi \in U_{\xi} \subset \operatorname{comp}_{x}\left(U_{1}\right)=U_{0} . \tag{2}
\end{equation*}
$$

The existence of such an open set U_{ξ} for every ξ shows U_{0} is open (and we're done).
The little argument above, starting with "On the other hand" and continuing up to (2) essentially shows that if $\xi \in \operatorname{comp}_{x}\left(U_{1}\right)$, then $\operatorname{comp}_{\xi}\left(U_{1}\right)=\operatorname{comp}_{x}\left(U_{1}\right)$, that is, components are disjoint connected sets partitioning whatever set you take the components in (in this case U_{1}). This fact could also be quoted in this problem, if you remember it.
\qquad
5. Let $X=(0,1]$ and consider $\phi: X \rightarrow \mathbb{R}^{2}$ by

$$
\phi(t)= \begin{cases}(t, \sin (1 / t)), & 0<t \leq 2 / \pi \\ (6 / \pi-2 t, 1), & 2 / \pi \leq t \leq 3 / \pi \\ (0,7-2 \pi t), & 3 / \pi \leq t \leq 1\end{cases}
$$

Let $Y=\phi(X)$.
(a) (5 points) Show X is locally path connected.
(b) (5 points) Show ϕ is continuous so that Y is the continuous image of a locally path connected space.
(c) (5 points) Show Y is not locally path connected.
(d) (5 points) Show the homeomorphic image of a locally path connected space is locally path connected.

Solution:

(a) Recall that a space X is locally path connected if for each $x \in X$ and each open set U with $x \in U$, there is an open set U_{0} and a path connected set C with $x \in U_{0} \subset C \subset U$.
If $0<a<b \leq 1$, then $\gamma(t)=(1-t) a+t b$ is a path from a to b. Or we could just remember that intervals are path connected. In any case, the same is true for any open interval, so given an open set U and a point $x \in U$, there is an open interval U_{0} with $X \in U_{0} \subset U$. The interval U_{0} is open and path connected.
(b) Taking $t=2 / \pi$ in the first case of ϕ, we get $(2 / \pi, 1)$. The same value of t in the second case gives $(2 / \pi, 1)$.

Taking $t=3 / \pi$ in the second case gives $(0,1)$. The same value of t in the third case gives $(0,1)$.
Since these values agree, ϕ is well-defined. Furthermore, ϕ is continuous by the gluing lemma.
(c) The space Y looks like this:

If we take an open ball V centered as pictured at the endpoint $\phi(1)=(0,7-$ $2 \pi)=p$ and having small radius, then $V \cap \phi(X)$ contains infinitely many components. If p is in any open set V_{0} with $V_{0} \subset V$, then there is no connected set C with $V_{0} \subset C \subset V$. This is because infinitely many of the components of V must also intersect V_{0}, but any connected set in V must be a subset of only
one component. Thus, $\phi(X)$ is not even locally connected. (Since local path connectedness implies local connectedness, this means $\phi(X)$ is not locally path connected.)
(d) This is quite similar to part (a) of the previous problem.

If $h: X \rightarrow Y$ and X is locally path connected, then given any point $y=h(x) \in$ Y and an open set V with $y \in V$, we have a point $x \in X$, and we want to apply the definition of local path connectedness of X at x. We can take the open set $U=h^{-1}(V)$, and we get an open set U_{0} and a connected set C with $x \subset U_{0} \subset C \subset U$. Then we have an open set $h\left(U_{0}\right)$ and a path connected set $h(C)$ with

$$
y \in h\left(U_{0}\right) \subset h(C) \subset V .
$$

This means $h(X)$ is locally path connected.
We used here that the continuous image of a path connected set is path connected, which is true.
As this argument was pretty easy/straightforward, and the continuous images of path connected spaces are path connected, it is interesting to see where it breaks down for $\phi(X)$. A quick look at the argument shows that the only questionable point is the assertion that the forward image $h\left(U_{0}\right)$ is an open set. This must fail for $\phi\left(U_{0}\right)$. Let's see: V was the ball shown in the drawing. The inverse image of V is the union of some interval $(b, 1]$ with an infinite collection of open intervals to the left of $(b, 1]$. This is $U=\phi^{-1}(V)$, and indeed, this is an open set. Also, $1 \in U$ with $\phi(1)=(0,7-2 \pi)=p$ the center of V. We can apply local connectedness (or local path connectedness) in $X=(0,1]$ and take an open interval $U_{0}=\left(b^{\prime}, 1\right] \subset(b, 1]$. In fact, $U_{0}=(b, 1]$ will be fine. Then we see the problem, the forward image $\phi(b, 1]$ is definitely not open in Y. This is a vertical segment

$$
\{(0, t): a<t \leq 7-2 \pi\} .
$$

The point p, in particular, is in this vertical segment, and any open set about p, as mentioned above, contains many components of $\phi(X)$ outside of the vertical segment.
\qquad
6. Let $q: \mathbb{R} \rightarrow\{-1,0,1\}=Y$ by

$$
q(x)=\left\{\begin{aligned}
-1, & x<0 \\
0, & x=0 \\
1, & x>0
\end{aligned}\right.
$$

Recall that the quotient topology on Y is defined by

$$
\mathcal{Q}_{Y}=\left\{V \subset Y: q^{-1}(V) \text { is open in } \mathbb{R}\right\} .
$$

(a) (10 points) What is \mathcal{Q}_{Y} ?
(b) (10 points) (True or False) If $q: X \rightarrow Y$ is an identification map and X is Hausdorff, then Y is Hausdorff.

Solution:

(a)

$$
\mathcal{Q}_{Y}=\{\phi,\{-1\},\{-1,1\},\{1\},\{-1,0,1\}\}
$$

(There are three singleton sets, and $\{0\}$ has inverse image $\{0\}$ which is not open in \mathbb{R}. There are three doubleton sets. If a doubleton has 0 in it, then the inverse image is a closed interval $[0, \infty)$ or $(-\infty, 0]$. In neither case is the inverse image open.)
(b) This map q is continuous, essentially by definition, and \mathbb{R} is certainly Hausdorff. However, there is no open set separating 0 and 1 in Y. So the assertion is False.
7. Let $\mathbb{Z} \times \mathbb{Z}=\{(m, n): m, n$ are integers $\} \subset \mathbb{R}^{2}$.
(a) (5 points) Show $G=\mathbb{Z} \times \mathbb{Z}$ is a group (under addition).
(b) (5 points) Show G acts on \mathbb{R}^{2} by $(n, m, x, y) \mapsto(x+n, y+m)$.
(c) (5 points) Identify the quotient space \mathbb{R}^{2} / G.
(d) (5 points) Consider $A=\mathbb{Z} \times \mathbb{Z} \subset \mathbb{R}^{2}$. Show that the quotient spaces \mathbb{R}^{2} / G and \mathbb{R}^{2} / A are not homeomorphic.
This problem needs an adjustment/correction. The first three parts are okay, but the assertion of part (d) is not so obvious. Let's drop a dimension, and make our group \mathbb{Z}. Of course part (a), then becomes trivial. Part (b) has the same solution as below, just given componentwise, so it is a bit easier-just checking the definition. The space in part (c) changes as described in the solution of part (d) below.

Solution:

(a) The operation is $(m, n)+(\mu, \nu)=(m+\mu, n+\nu)$. This is clearly well-defined and associative. The identity element is $(0,0)$. The inverse of (m, n) is $(-m,-n)$.
(b) The suggested function is clearly a well-defined function from $\mathbb{Z}^{2} \times \mathbb{R}^{2}$ to \mathbb{R}^{2}. Also,

$$
(m+\mu, n+\nu)(x, y)=(m+\mu+x, n+\nu+y)=(m, n)(\mu+x, \nu+y)
$$

This is the required associative property. Finally,

$$
(0,0)(x, y)=(x, y)
$$

so the identity acts as it should, and we have a group action.
For the definition, see Homework Assignment 10.
(c) \mathbb{R}^{2} / G is the torus $\mathbb{S}^{1} \times \mathbb{S}^{1}$.
(d) In view of the correction, The first space we want to consider is $\mathbb{R} / \mathbb{Z}=\mathbb{S}^{1}$, the circle. The other space $Y=\mathbb{R} / \mathbb{Z}$ with \mathbb{Z} considered as a subset, on the other hand, is a countably infinite collection of circles joined at one point. When you remove a point from the circle, what you have left is connected. When you remove the common point from Y, the image of each interval $(j, j+1)$ for $j \in \mathbb{Z}$ is a distinct connected component, so these spaces can't be homeomorphic.
To be a bit more precise, $Y=\mathbb{R} / \mathbb{Z}$ is a partition of \mathbb{R} consisting of partition sets \mathbb{Z} and $\{x\}$ where $x \notin \mathbb{Z}$. (These are the points in $Y=\mathbb{R} / \mathbb{Z}$.) Therefore, if we assume $h: \mathbb{S}^{1} \rightarrow Y=\mathbb{R} / \mathbb{Z}$ is a homeomorphism. Then $\mathbb{S}^{1} \backslash\left\{h^{-1}(\mathbb{Z})\right\}$ is connected, but $(\mathbb{R} / \mathbb{Z}) \backslash \mathbb{Z}$ has countably many components $(j, j+1)$ for $j \in \mathbb{Z}$.
\qquad
8. Consider the (universal) covering map $\phi: \mathbb{R}^{2} \rightarrow \mathbb{T}^{2}$ by

$$
\phi(x, y)=\left(1+\frac{\cos y}{2}\right)(\cos x, \sin x, 0)+\frac{\sin y}{2}(0,0,1) .
$$

Also, consider the loops $\gamma[0,1] \rightarrow \mathbb{T}^{2}$ and $\eta:[0,1] \rightarrow \mathbb{T}^{2}$ by $\gamma(t)=3(\cos 2 \pi t, \sin 2 \pi t, 0) / 2$ and

$$
\eta(t)=\left(1+\frac{\cos 2 \pi t}{2}\right)(1,0,0)+\frac{\sin 2 \pi t}{2}(0,0,1)
$$

respectively both of which start and end at $p=(3 / 2,0,0)$.
(a) (5 points) Draw the (image sets of the) loops γ and η on \mathbb{T}^{2}.
(b) (5 points) Recall the concatenation $\eta \triangleleft \gamma:[0,1] \rightarrow \mathbb{T}^{2}$ is a loop given by

$$
\eta \triangleleft \gamma(t)= \begin{cases}\gamma(2 t), & 0 \leq t \leq 1 / 2 \\ \eta(2 t-1), & 1 / 2 \leq t \leq 1\end{cases}
$$

Find explicit formulas for the liftings of $\gamma, \eta, \eta \triangleleft \gamma$, and $(-\gamma) \triangleleft \eta \triangleleft \gamma$ starting at $(0,0) \in \mathbb{R}^{2}$, and draw these paths.
(c) (5 points) Find a fixed endpoint homotopy of the lifting

$$
(-\widehat{\gamma) \triangleleft \eta} \triangleleft \gamma
$$

to a path along a straight line. To which of the four liftings of part (c) above is this straight line path homotopic?

Solution:

