
Math 4431, Exam 1: Chapters 1-2 (practice)Name and section:

1. Let X and Y be topological spaces.

(a) (10 points) Give a precise definition of continuity for a function f : X → Y .

(b) (10 points) (pointwise continuity) Show that if f : X → Y is continuous, then for
each x0 ∈ X and each open set V in Y with f(x0) ∈ V , there is some open set U
in X with x0 ∈ U and f(U) = {f(x) : x ∈ U} ⊂ V .

Solution:

(a) A function f : X → Y is continuous if f−1(V ) = {x ∈ X : f(x) ∈ V } is open in
X whenever V is open in Y .

(b) f−1(V ) us such a set.



Name and section:

2. (2.2.13) A topological space X is called Hausdorff if given x and y in X with x 6= y,
there are disjoint open sets U and V with x ∈ U and y ∈ V .

(a) (10 points) Define the term metric space.

(b) (10 points) Show that every metric space is Hausdorff.

Solution:

(a) A metric space is a set together with a function d : X ×X → [0,∞) satisfying
the following for each x, y, z ∈ X

(i) d(x, y) = 0 if and only if x = y.

(ii) d(x, y) = d(y, x).

(iii) d(x, z) ≤ d(x, y) + d(y, z).

(b) Since the metric is positive definite and x 6= y, we know d(x, y) > 0. Let
r = d(x, y)/2. Then Br(x) and Br(y) are disjoint open sets with x ∈ Br(x) and
y ∈ Br(y). In fact, if ξ ∈ Br(x) ∩ Br(y), then

d(x, y) ≤ d(x, ξ) + d(ξ, y) < 2r = d(x, y).

(This is a contradiction.)
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3. (20 points) (2.2.18) If X = ∪∞

j=1
Aj and Y are topological spaces and A1 ⊂ int(A2) ⊂

A2 ⊂ int(A3) ⊂ A3 ⊂ · · · , then show that f : X → Y is continuous if

f∣
∣

Aj

: Aj → Y is continuous for j = 1, 2, 3, . . ..

Solution: Let V be open in Y and denote the restriction of f to Aj by fj . Then
f−1

j (V ) is open in Aj . This means there is a set Uj open in X with f−1

j (V ) = Aj ∩Uj .
Notice that

f−1(V ) = ∪∞

j=1
f−1(V ) ∩ Aj

= ∪∞

j=1
[f−1

j (V ) ∩ Aj ]

= ∪∞

j=1
[Uj ∩ Aj ].

One appears to be stuck here precisely because we do not know the sets Aj are open.
However, because of the nesting, we do know that X = ∪∞

j=1
int(Aj). In order to

repeat the basic argument above, we will also need to know

f∣
∣

int(Aj)

: int(Aj) → Y is continuous for j = 1, 2, 3, . . ..

Let’s verify this first: If V is open in Y and gj denotes the restriction of f to int(Aj),
then

g−1

j (V ) = f−1

j (V ) ∩ int(Aj).

Since we know fj is continuous, we know f−1

j (V ) is open in Aj. That is, there is

some U open in X with f−1

j (V ) = Aj ∩ U . Thus,

g−1

j (V ) = f−1

j (V ) ∩ int(Aj) = U ∩ int(Aj),

and this set is open in X. Therefore, we get an even easier proof:

f−1(V ) = ∪∞

j=1
f−1(V ) ∩ int(Aj) = ∪∞

j=1
[g−1

j (V ) ∩ int(Aj)].

This is a union of open sets in X and is, therefore, open.
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4. (20 points) Show that given x0 fixed in a metric space X (with distance function d) the
function f : X → R1 by f(x) = d(x, x0) is continuous.

Solution: We can use pointwise continuity here. Let x1 ∈ X and let ǫ > 0. Taking
δ = ǫ and any point x with d(x, x1) < δ = ǫ we can use the triangle inequality

d(x, x0) ≤ d(x, x1) + d(x1, x0)

to conclude

d(x, x0) − d(x1, x0) ≤ d(x, x1) + d(x1, x0) − d(x1, x0) = d(x, x1) < ǫ,

and

d(x1, x0) − d(x, x0) ≥ d(x1, x0) − [d(x, x1) + d(x1, x0)] = −d(x, x1) > −ǫ.

Therefore,
|f(x) − f(x1)| = |d(x, x0) − d(x1, x0)| < ǫ.
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5. (20 points) If A is a (nonempty) closed set in a metric space X and x ∈ X\A, then
show d(x, A) > 0.

Solution: We know
d(x, A) = inf

a∈A
d(x, a).

Thus, d(x, A) ≥ 0, and if d(x, A) = 0, we have for any ǫ > 0, there is some a ∈ A
with d(x, a) < ǫ. This means A ∩ Bǫ(a) 6= φ. Therefore, x ∈ clus(A) ⊂ A = A. This
contradicts the fact that x /∈ A.


