Math 4431, Exam 1: Chapters 1-2 (practiceyame and section:

1. Let X and Y be topological spaces.
(a) (10 points) Give a precise definition of continuity for a function $f: X \rightarrow Y$.
(b) (10 points) (pointwise continuity) Show that if $f: X \rightarrow Y$ is continuous, then for each $x_{0} \in X$ and each open set V in Y with $f\left(x_{0}\right) \in V$, there is some open set U in X with $x_{0} \in U$ and $f(U)=\{f(x): x \in U\} \subset V$.

Solution:

(a) A function $f: X \rightarrow Y$ is continuous if $f^{-1}(V)=\{x \in X: f(x) \in V\}$ is open in X whenever V is open in Y.
(b) $f^{-1}(V)$ us such a set.
\qquad
2. (2.2.13) A topological space X is called Hausdorff if given x and y in X with $x \neq y$, there are disjoint open sets U and V with $x \in U$ and $y \in V$.
(a) (10 points) Define the term metric space.
(b) (10 points) Show that every metric space is Hausdorff.

Solution:

(a) A metric space is a set together with a function $d: X \times X \rightarrow[0, \infty)$ satisfying the following for each $x, y, z \in X$
(i) $d(x, y)=0$ if and only if $x=y$.
(ii) $d(x, y)=d(y, x)$.
(iii) $d(x, z) \leq d(x, y)+d(y, z)$.
(b) Since the metric is positive definite and $x \neq y$, we know $d(x, y)>0$. Let $r=d(x, y) / 2$. Then $B_{r}(x)$ and $B_{r}(y)$ are disjoint open sets with $x \in B_{r}(x)$ and $y \in B_{r}(y)$. In fact, if $\xi \in B_{r}(x) \cap B_{r}(y)$, then

$$
d(x, y) \leq d(x, \xi)+d(\xi, y)<2 r=d(x, y)
$$

(This is a contradiction.)
\qquad
3. (20 points) (2.2.18) If $X=\cup_{j=1}^{\infty} A_{j}$ and Y are topological spaces and $A_{1} \subset \operatorname{int}\left(A_{2}\right) \subset$ $A_{2} \subset \operatorname{int}\left(A_{3}\right) \subset A_{3} \subset \cdots$, then show that $f: X \rightarrow Y$ is continuous if

$$
f_{\left.\right|_{A_{j}}}: A_{j} \rightarrow Y \quad \text { is continuous for } j=1,2,3, \ldots
$$

Solution: Let V be open in Y and denote the restriction of f to A_{j} by f_{j}. Then $f_{j}^{-1}(V)$ is open in A_{j}. This means there is a set U_{j} open in X with $f_{j}^{-1}(V)=A_{j} \cap U_{j}$. Notice that

$$
\begin{aligned}
f^{-1}(V) & =\cup_{j=1}^{\infty} f^{-1}(V) \cap A_{j} \\
& =\cup_{j=1}^{\infty}\left[f_{j}^{-1}(V) \cap A_{j}\right] \\
& =\cup_{j=1}^{\infty}\left[U_{j} \cap A_{j}\right] .
\end{aligned}
$$

One appears to be stuck here precisely because we do not know the sets A_{j} are open. However, because of the nesting, we do know that $X=\cup_{j=1}^{\infty} \operatorname{int}\left(A_{j}\right)$. In order to repeat the basic argument above, we will also need to know

$$
f_{\left.\right|_{\operatorname{int}\left(A_{j}\right)}}: \operatorname{int}\left(A_{j}\right) \rightarrow Y \quad \text { is continuous for } j=1,2,3, \ldots .
$$

Let's verify this first: If V is open in Y and g_{j} denotes the restriction of f to $\operatorname{int}\left(A_{j}\right)$, then

$$
g_{j}^{-1}(V)=f_{j}^{-1}(V) \cap \operatorname{int}\left(A_{j}\right) .
$$

Since we know f_{j} is continuous, we know $f_{j}^{-1}(V)$ is open in A_{j}. That is, there is some U open in X with $f_{j}^{-1}(V)=A_{j} \cap U$. Thus,

$$
g_{j}^{-1}(V)=f_{j}^{-1}(V) \cap \operatorname{int}\left(A_{j}\right)=U \cap \operatorname{int}\left(A_{j}\right),
$$

and this set is open in X. Therefore, we get an even easier proof:

$$
f^{-1}(V)=\cup_{j=1}^{\infty} f^{-1}(V) \cap \operatorname{int}\left(A_{j}\right)=\cup_{j=1}^{\infty}\left[g_{j}^{-1}(V) \cap \operatorname{int}\left(A_{j}\right)\right] .
$$

This is a union of open sets in X and is, therefore, open.
\qquad
4. (20 points) Show that given x_{0} fixed in a metric space X (with distance function d) the function $f: X \rightarrow \mathbb{R}^{1}$ by $f(x)=d\left(x, x_{0}\right)$ is continuous.

Solution: We can use pointwise continuity here. Let $x_{1} \in X$ and let $\epsilon>0$. Taking $\delta=\epsilon$ and any point x with $d\left(x, x_{1}\right)<\delta=\epsilon$ we can use the triangle inequality

$$
d\left(x, x_{0}\right) \leq d\left(x, x_{1}\right)+d\left(x_{1}, x_{0}\right)
$$

to conclude

$$
d\left(x, x_{0}\right)-d\left(x_{1}, x_{0}\right) \leq d\left(x, x_{1}\right)+d\left(x_{1}, x_{0}\right)-d\left(x_{1}, x_{0}\right)=d\left(x, x_{1}\right)<\epsilon
$$

and

$$
d\left(x_{1}, x_{0}\right)-d\left(x, x_{0}\right) \geq d\left(x_{1}, x_{0}\right)-\left[d\left(x, x_{1}\right)+d\left(x_{1}, x_{0}\right)\right]=-d\left(x, x_{1}\right)>-\epsilon
$$

Therefore,

$$
\left|f(x)-f\left(x_{1}\right)\right|=\left|d\left(x, x_{0}\right)-d\left(x_{1}, x_{0}\right)\right|<\epsilon
$$

Name and section: \qquad
5. (20 points) If A is a (nonempty) closed set in a metric space X and $x \in X \backslash A$, then show $d(x, A)>0$.

Solution: We know

$$
d(x, A)=\inf _{a \in A} d(x, a)
$$

Thus, $d(x, A) \geq 0$, and if $d(x, A)=0$, we have for any $\epsilon>0$, there is some $a \in A$ with $d(x, a)<\epsilon$. This means $A \cap B_{\epsilon}(a) \neq \phi$. Therefore, $x \in \operatorname{clus}(A) \subset \bar{A}=A$. This contradicts the fact that $x \notin A$.

