\qquad

1. (a) (10 points) Give a precise definition of what it means for a topological space X to be compact.
(b) (10 points) Let $K \subset X$ be compact (in the subspace topology). If $\left\{U_{\alpha}\right\}_{\alpha \in \Gamma}$ is a family of open sets in X such that

$$
K \subset \cup_{\alpha \in \Gamma} U_{\alpha}
$$

then show there is a finite subfamily $\left\{U_{\alpha_{1}}, \ldots, U_{\alpha_{k}}\right\}$ such that

$$
K \subset \cup_{j=1}^{k} U_{\alpha_{j}}
$$

Solution:

(a) X is compact if for every family $\left\{U_{\alpha}\right\}_{\alpha \in \Gamma}$ of open sets in X such that

$$
X=\cup_{\alpha \in \Gamma} U_{\alpha}
$$

there is a finite subfamily $\left\{U_{\alpha_{1}}, \ldots, U_{\alpha_{k}}\right\}$ such that

$$
X=\cup_{j=1}^{k} U_{\alpha_{j}} .
$$

(b) If $\left\{U_{\alpha}\right\}_{\alpha \in \Gamma}$ is an open cover of K by open sets in X, then $\left\{U_{\alpha} \cap K\right\}_{\alpha \in \Gamma}$ is an open cover of K by open sets in K. By compactness, there is a finite subcover

$$
K=\cup_{j=1}^{k}\left(U_{\alpha_{j}} \cap K\right),
$$

and clearly

$$
K \subset \cup_{j=1}^{k} U_{\alpha_{j}}
$$

\qquad
2. (20 points) Prove that the continuous image of a compact space is compact.

Solution: Let X be a compact space and $f: X \rightarrow Y$ a continuous function. If $f(X) \subset \cup_{\alpha \in \Gamma} V_{\alpha}$ for some open sets V_{α} in Y, then by continuity

$$
\left\{f^{-1}\left(V_{\alpha}\right)\right\}_{\alpha \in \Gamma}
$$

is an open cover of X. By the compactness of X, there is a finite subcover

$$
\left\{f^{-1}\left(V_{\alpha_{1}}\right), \ldots, f^{-1}\left(V_{\alpha_{k}}\right)\right\}
$$

of X. If $y=f(x) \in f(X)$, then there is some j for which $x \in f^{-1}\left(V_{\alpha_{j}}\right)$. This means, $y=f(x) \in V_{\alpha_{j}}$. Therefore, $\left\{V_{\alpha_{1}}, \ldots, V_{\alpha_{k}}\right\}$ is a finite subcover of $f(X)$. Therefore, $f(X)$ is compact.
\qquad
3. (3.4.25) Let X be a topological space, and consider the function $f: X \rightarrow X \times X$ by $f(x)=(x, x)$.
(a) (10 points) Show that f is continuous.
(b) (10 points) Show that if the diagonal $f(X)$ is closed in $X \times X$, then X is Hausdorff.

Solution:

(a) It is enough to show that the inverse image of a basic open set $U \times V$ where U and V are open in X is open. In fact,

$$
f^{-1}(U \times V)=U \cap V
$$

so f is continuous.
(b) Let $x_{1} \neq x_{2}$ be points in X and denote the diagonal by $\Delta=f(X)$. Then $\left(x_{1}, x_{2}\right)$ is in the open set $X \times X \backslash \Delta$. There is a basic open set $U \times V$ with $\left(x_{1}, x_{2}\right) \in U \times V \subset \Delta^{c}$. That is, $x_{1} \in U, x_{2} \in V$, and $\left(\xi_{1}, \xi_{2}\right) \in U \times V$ implies $\xi_{1} \neq \xi_{2}$. This implies $U \cap V=\phi$ and X is Hausdorff since if $\xi \in U \cap V$, then $(\xi, \xi) \in U \times V$.
4. (a) (10 points) Give the precise definition of what it means for a topological space X to be connected.
(b) (10 points) Prove that if A and B are connected subspaces of a topological space X and $A \cap B \neq \phi$, then $A \cup B$ is connected.

Solution:

(a) X is connected if whenever U_{1} and U_{2} are disjoint open sets with $U_{1} \cup U_{2}=$ X, then either $U_{1}=\phi$ or $U_{2}=\phi$. (Sometimes it may also be required for convenience that $X \neq \phi$.)
(b) Assume $A \cup B=U_{1} \cup U_{2}$ for disjoint open sets $U_{j}, j=1,2$. Let $x \in A \cap B$. The element x is in exactly one of U_{1} or U_{2}, but not both (since they are disjoint). Say $x \in U_{1}$. If $U_{2} \cap A \neq \phi$, then $V_{1}=U_{1} \cap A$ and $V_{2}=U_{2} \cap A$ are disjoint nonempty open sets in A with $A=V_{1} \cup V_{2}$. This contradicts the hypothesis that A is connected. If, on the other hand, $U_{2} \cap A=\phi$, then $U_{2} \subset B$, and $W_{1}=U_{1} \cap B$ and $W_{2}=U_{2} \cap B$ are disjoint open sets with $B=W_{1} \cup W_{2}$. Since B is connected and $W_{1} \neq \phi$, we must have $W_{2}=U_{2} \cap B=\phi$. But in this case $U_{2} \subset B$, so $U_{2} \cap B=U_{2}=\phi$.
The case $x \in U_{2}$ can be considered symmetrically leading to the conclusion $U_{1}=\phi$. This shows $A \cup B$ is connected.
\qquad
5. (a) (10 points) Define the product space $X \times Y$ of two topological spaces.
(b) (10 points) Prove that if X and Y are path connected spaces, then $X \times Y$ is connected.

Solution:

(a) $X \times Y=\{(x, y): x \in X$ and $y \in Y\}$ is the topological space with basis

$$
\mathcal{B}=\{U \times V: U \text { is open in } X \text { and } V \text { is open in } Y\} .
$$

(b) Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$. Let $\gamma:[0,1] \rightarrow X$ be a (continuous) path connecting x_{1} to x_{2} in X. Let $\eta:[0,1] \rightarrow X$ be a (continuous) path connecting y_{1} to y_{2} in Y.
Consider the function $\phi:[0,1] \rightarrow X \times Y$ with

$$
\phi(t)= \begin{cases}\left(\gamma(2 t), y_{1}\right), & 0 \leq t \leq 1 / 2 \\ \left(x_{2}, \eta(2(t-1 / 2))\right), & 1 / 2 \leq t \leq 1\end{cases}
$$

In order to show ϕ is continuous, it is enough to show the coordinate projections are continuous. The first coordinate projection is $\phi_{1}:[0,1] \rightarrow X$ by

$$
\phi_{1}(t)= \begin{cases}\gamma(2 t), & 0 \leq t \leq 1 / 2 \\ x_{2}, & 1 / 2 \leq t \leq 1\end{cases}
$$

If U is open in X and $x_{2} \notin U$, then $\phi_{1}^{-1}(U)$ is an open subset of $[0,1 / 2]$ that does not contain $1 / 2$. This is because $\tilde{\gamma}(t)=\gamma(2 t)$ is a composition of continuous functions. An open set in $[0,1 / 2]$ which does not contain $1 / 2$ is also an open set in $[0,1 / 2)$ and an open set in $[0,1]$.
On the other hand, if $x_{2} \in U$, then $\phi_{1}^{-1}(U)$ is the union of an open set $\tilde{\gamma}^{-1}(U)$ which does contain $1 / 2$ and the set $[1 / 2,1]$. This set is easily seen to be open in $[0,1]$.

We have shown the first coordinate function ϕ_{1} is continuous. The second coordinate function $\phi_{2}:[0,1] \rightarrow Y$ by

$$
\phi_{2}(t)= \begin{cases}y_{1}, & 0 \leq t \leq 1 / 2 \\ \eta(2(t-1 / 2)), & 1 / 2 \leq t \leq 1\end{cases}
$$

is continuous by a very similar argument. It follows that ϕ is continuous and ϕ is a path connecting $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$. Therefore, $X \times Y$ is path connected and, therefore, connected.
For a "cleaner" proof that ϕ is continuous, see Lemma 4.6 on page 69 of Armstrong.

