
Math 4431, Exam 2: Ch. 3 (practice) Name and section:

1. (a) (10 points) Give a precise definition of what it means for a topological space X to
be compact.

(b) (10 points) Let K ⊂ X be compact (in the subspace topology). If {Uα}α∈Γ is a
family of open sets in X such that

K ⊂ ∪α∈ΓUα,

then show there is a finite subfamily {Uα1
, . . . , Uαk

} such that

K ⊂ ∪k
j=1

Uαj
.

Solution:

(a) X is compact if for every family {Uα}α∈Γ of open sets in X such that

X = ∪α∈ΓUα,

there is a finite subfamily {Uα1
, . . . , Uαk

} such that

X = ∪k
j=1

Uαj
.

(b) If {Uα}α∈Γ is an open cover of K by open sets in X, then {Uα ∩ K}α∈Γ is an
open cover of K by open sets in K. By compactness, there is a finite subcover

K = ∪k
j=1

(Uαj
∩ K),

and clearly
K ⊂ ∪k

j=1
Uαj

.
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2. (20 points) Prove that the continuous image of a compact space is compact.

Solution: Let X be a compact space and f : X → Y a continuous function. If
f(X) ⊂ ∪α∈ΓVα for some open sets Vα in Y , then by continuity

{f−1(Vα)}α∈Γ

is an open cover of X. By the compactness of X, there is a finite subcover

{f−1(Vα1
), . . . , f−1(Vαk

)}

of X. If y = f(x) ∈ f(X), then there is some j for which x ∈ f−1(Vαj
). This means,

y = f(x) ∈ Vαj
. Therefore, {Vα1

, . . . , Vαk
} is a finite subcover of f(X). Therefore,

f(X) is compact.
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3. (3.4.25) Let X be a topological space, and consider the function f : X → X × X by
f(x) = (x, x).

(a) (10 points) Show that f is continuous.

(b) (10 points) Show that if the diagonal f(X) is closed in X×X, then X is Hausdorff.

Solution:

(a) It is enough to show that the inverse image of a basic open set U × V where U
and V are open in X is open. In fact,

f−1(U × V ) = U ∩ V,

so f is continuous.

(b) Let x1 6= x2 be points in X and denote the diagonal by ∆ = f(X). Then
(x1, x2) is in the open set X × X\∆. There is a basic open set U × V with
(x1, x2) ∈ U × V ⊂ ∆c. That is, x1 ∈ U , x2 ∈ V , and (ξ1, ξ2) ∈ U × V implies
ξ1 6= ξ2. This implies U ∩ V = φ and X is Hausdorff since if ξ ∈ U ∩ V , then
(ξ, ξ) ∈ U × V .



Name and section:

4. (a) (10 points) Give the precise definition of what it means for a topological space X
to be connected.

(b) (10 points) Prove that if A and B are connected subspaces of a topological space
X and A ∩ B 6= φ, then A ∪ B is connected.

Solution:

(a) X is connected if whenever U1 and U2 are disjoint open sets with U1 ∪ U2 =
X, then either U1 = φ or U2 = φ. (Sometimes it may also be required for
convenience that X 6= φ.)

(b) Assume A∪B = U1 ∪U2 for disjoint open sets Uj , j = 1, 2. Let x ∈ A∩B. The
element x is in exactly one of U1 or U2, but not both (since they are disjoint).
Say x ∈ U1. If U2 ∩ A 6= φ, then V1 = U1 ∩ A and V2 = U2 ∩ A are disjoint
nonempty open sets in A with A = V1 ∪ V2. This contradicts the hypothesis
that A is connected. If, on the other hand, U2 ∩ A = φ, then U2 ⊂ B, and
W1 = U1 ∩B and W2 = U2 ∩B are disjoint open sets with B = W1 ∪W2. Since
B is connected and W1 6= φ, we must have W2 = U2 ∩ B = φ. But in this case
U2 ⊂ B, so U2 ∩ B = U2 = φ.

The case x ∈ U2 can be considered symmetrically leading to the conclusion
U1 = φ. This shows A ∪ B is connected.
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5. (a) (10 points) Define the product space X × Y of two topological spaces.

(b) (10 points) Prove that if X and Y are path connected spaces, then X × Y is
connected.

Solution:

(a) X × Y = {(x, y) : x ∈ X and y ∈ Y } is the topological space with basis

B = {U × V : U is open in X and V is open in Y }.

(b) Let (x1, y1), (x2, y2) ∈ X × Y . Let γ : [0, 1] → X be a (continuous) path
connecting x1 to x2 in X. Let η : [0, 1] → X be a (continuous) path connecting
y1 to y2 in Y .

Consider the function φ : [0, 1] → X × Y with

φ(t) =

{

(γ(2t), y1), 0 ≤ t ≤ 1/2,
(x2, η(2(t − 1/2))), 1/2 ≤ t ≤ 1.

In order to show φ is continuous, it is enough to show the coordinate projections
are continuous. The first coordinate projection is φ1 : [0, 1] → X by

φ1(t) =

{

γ(2t), 0 ≤ t ≤ 1/2,
x2, 1/2 ≤ t ≤ 1.

If U is open in X and x2 /∈ U , then φ−1

1
(U) is an open subset of [0, 1/2] that does

not contain 1/2. This is because γ̃(t) = γ(2t) is a composition of continuous
functions. An open set in [0, 1/2] which does not contain 1/2 is also an open
set in [0, 1/2) and an open set in [0, 1].

On the other hand, if x2 ∈ U , then φ−1

1
(U) is the union of an open set γ̃−1(U)

which does contain 1/2 and the set [1/2, 1]. This set is easily seen to be open
in [0, 1].

We have shown the first coordinate function φ1 is continuous. The second
coordinate function φ2 : [0, 1] → Y by

φ2(t) =

{

y1, 0 ≤ t ≤ 1/2,
η(2(t − 1/2)), 1/2 ≤ t ≤ 1.

is continuous by a very similar argument. It follows that φ is continuous and
φ is a path connecting (x1, y1) to (x2, y2). Therefore, X × Y is path connected
and, therefore, connected.

For a “cleaner” proof that φ is continuous, see Lemma 4.6 on page 69 of Arm-
strong.


