\qquad

1. (product space with finitely many factors) Let X_{1} and X_{2} be topological spaces and for $A_{j} \subset X_{j}, j=1,2$ define

$$
A_{1} \times A_{2}=\left\{\left(x_{1}, x_{2}\right): x_{j} \in A_{j}, j=1,2\right\}
$$

Let

$$
\mathcal{B}=\left\{U_{1} \times U_{2}: U_{j} \text { is an open set in } X_{j}\right\}
$$

(a) (5 points) Show that

$$
\bigcup_{B \in \mathcal{B}} B=X \times Y \quad \text { and } \quad \bigcap_{j=1}^{k} B_{j} \in \mathcal{B} \quad \text { whenever } B_{j} \in \mathcal{B}, j=1, \ldots, k
$$

(b) (5 points) Show that

$$
\mathcal{P}=\left\{\bigcup_{\alpha \in \Gamma} B_{\alpha}: B_{\alpha} \in \mathcal{B} \text { for } \alpha \text { in any index set } \Gamma\right\}
$$

is a topology on $X_{1} \times X_{2}$. (\mathcal{P} is, of course, called the product topology.
\qquad
(c) (5 points) (Theorem 3.12) Consider $p_{j}: X_{1} \times X_{2} \rightarrow X_{j}$ for $j=1,2$ by $p_{j}\left(x_{1}, x_{2}\right)=$ x_{j}. Show p_{1} and p_{2} are continuous.
(d) (5 points) Show that if \mathcal{T} is a topology on $X_{1} \times X_{2}$ (not necessarily the product topology \mathcal{P}) and p_{1} and p_{2} are continuous with respect to \mathcal{T}, then $\mathcal{P} \subset \mathcal{T}$.
(e) (5 points) Give an example of a topology on $\mathbb{R} \times \mathbb{R}$ with respect to which p_{1} : $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is not continuous.
(f) (5 points) Give an example of a topology \mathcal{T} which is on $\mathbb{R} \times \mathbb{R}$ which is different from the Euclidean topology but with respect to which $p_{j}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous for $j=1,2$.
\qquad
2. Let X_{1} and X_{2} be topological spaces.
(a) (10 points) (Theorem 3.14) If X_{1} and X_{2} are Hausdorff, then show $X_{1} \times X_{2}$ is Hausdorff.
(b) (10 points) (Theorem 3.15) If $X_{1} \times X_{2}$ is compact, then show X_{1} and X_{2} are compact.
\qquad
3. (Theorem 3.20) Let us take Armstrong's definition of a connected space: X is connected if whenever $X=X_{1} \cup X_{2}$ and $X_{1}, X_{2} \neq \phi$, then either

$$
\bar{X}_{1} \cap X_{2} \neq \phi \quad \text { or } \quad X_{1} \cap \bar{X}_{2} \neq \phi
$$

(a) (5 points) Show that if $A \subset X$ is connected, then whenever $A \subset A_{1} \cup A_{2}$ and $A \cap A_{j} \neq \phi, j=1,2$, then either

$$
\bar{A}_{1} \cap A_{2} \neq \phi \quad \text { or } \quad A_{1} \cap \bar{A}_{2} \neq \phi .
$$

(b) (5 points) Show that if whenever $A \subset A_{1} \cup A_{2}$ and $A \cap A_{j} \neq \phi, j=1,2$, then either

$$
\bar{A}_{1} \cap A_{2} \neq \phi \quad \text { or } \quad A_{1} \cap \bar{A}_{2} \neq \phi,
$$

then A is connected.

Name and section: \qquad
(c) (5 points) Show that if A is a connected subset of X and $A \subset U_{1} \cup U_{2}$ where U_{1} and U_{2} are disjoint open sets, then either

$$
A \subset U_{1} \quad \text { or } \quad A \subset U_{2}
$$

(d) (5 points) Show that if A is a connected subspace of X and

$$
A \subset S \subset \bar{A}
$$

then S is connected.

Name and section: \qquad
4. A topological space X is locally connected if for each $x \in X$ and each open set U with $x \in U$, there is some open set U_{0} and some connected set C with

$$
x \in U_{0} \subset C \subset U
$$

(a) (10 points) Show that the homeomorphic image of a locally connected space is locally connected.
(b) (10 points) Show that if X is locally connected, then for each $x \in X$ and each open set U with $x \in U$, there is an open connected set U_{0} with

$$
x \in U_{0} \subset U
$$

\qquad
5. Let $X=(0,1]$ and consider $\phi: X \rightarrow \mathbb{R}^{2}$ by

$$
\phi(t)= \begin{cases}(t, \sin (1 / t)), & 0<t \leq 2 / \pi \\ (6 / \pi-2 t, 1), & 2 / \pi \leq 3 / \pi \\ (0,7-2 \pi t), & 3 / \pi \leq t \leq 1\end{cases}
$$

Let $Y=\phi(X)$.
(a) (5 points) Show X is locally path connected.
(b) (5 points) Show ϕ is continuous so that Y is the continuous image of a locally path connected space.
(c) (5 points) Show Y is not locally path connected.
(d) (5 points) Show the homeomorphic image of a locally path connected space is locally path connected.
\qquad
6. Let $q: \mathbb{R} \rightarrow\{-1,0,1\}=Y$ by

$$
p(x)= \begin{cases}-1, & x<0 \\ 0, & x=0 \\ 1, & x>0\end{cases}
$$

Recall that the quotient topology on Y is defined by

$$
\mathcal{Q}_{Y}=\left\{V \subset Y: q^{-1}(V) \text { is open in } \mathbb{R}\right\} .
$$

(a) (10 points) What is \mathcal{Q}_{Y} ?
(b) (10 points) (True or False) If $q: X \rightarrow Y$ is an identification map and X is Hausdorff, then Y is Hausdorff.
\qquad
7. Let $\mathbb{Z} \times \mathbb{Z}=\{(m, n): m, n$ are integers $\} \subset \mathbb{R}^{2}$.
(a) (5 points) Show $G=\mathbb{Z} \times \mathbb{Z}$ is a group (under addition).
(b) (5 points) Show G acts on \mathbb{R}^{2} by $(n, m, x, y) \mapsto(x+n, y+m)$.
(c) (5 points) Identify the quotient space \mathbb{R}^{2} / G.
(d) (5 points) Consider $A=\mathbb{Z} \times \mathbb{Z} \subset \mathbb{R}^{2}$. Show that the quotient spaces \mathbb{R}^{2} / G and \mathbb{R}^{2} / A are not homeomorphic.
\qquad
8. Consider the (universal) covering map $\phi: \mathbb{R}^{2} \rightarrow \mathbb{T}^{2}$ by

$$
\phi(x, y)=\left(1+\frac{\cos y}{2}\right)(\cos x, \sin x, 0)+\frac{\sin y}{2}(0,0,1) .
$$

Also, consider the loops $\gamma[0,1] \rightarrow \mathbb{T}^{2}$ and $\eta:[0,1] \rightarrow \mathbb{T}^{2}$ by $\gamma(t)=3(\cos 2 \pi t, \sin 2 \pi t, 0) / 2$ and

$$
\eta(t)=\left(1+\frac{\cos 2 \pi t}{2}\right)(1,0,0)+\frac{\sin 2 \pi t}{2}(0,0,1)
$$

respectively both of which start and end at $p=(3 / 2,0,0)$.
(a) (5 points) Draw the (image sets of the) loops γ and η on \mathbb{T}^{2}.
(b) (5 points) Recall the concatenation $\eta \triangleleft \gamma:[0,1] \rightarrow \mathbb{T}^{2}$ is a loop given by

$$
\eta \triangleleft \gamma(t)= \begin{cases}\gamma(2 t), & 0 \leq t \leq 1 / 2 \\ \eta(2 t-1), & 1 / 2 \leq t \leq 1\end{cases}
$$

Find explicit formulas for the liftings of $\gamma, \eta, \eta \triangleleft \gamma$, and $(-\gamma) \triangleleft \eta \triangleleft \gamma$ starting at $(0,0) \in \mathbb{R}^{2}$, and draw these paths.
(c) (5 points) Find a fixed endpoint homotopy of the lifting

$$
(-\widehat{\gamma) \triangleleft \eta} \triangleleft \gamma
$$

to a path along a straight line. To which of the four liftings of part (c) above is this straight line path homotopic?

