Armstrong's problem 1.6.21 a solution

John McCuan

November 22, 2018

We are asked to find a homeomorphism/automorphism of $\overline{B_{1}(0)} \subset \mathbb{C}$ which interchanges two points in $B_{1}(0)$ and leaves the boundary fixed. The formulation of the problem as one in the complex plane initially suggested to me the use of Möbius transformations

$$
f(z)=\frac{a z+b}{c z+d}, \quad \text { with } a, b, c, d \in \mathbb{C} \text { and } a d-b c \neq 0 .
$$

These can be used to move points around inside a disk and leave the boundary invariant. They do not, in general, leave the boundary fixed, so I'm not sure they lead to an easy solution, though I think there can be a related solution as I'll describe at the end. Even with that, I seem to run into the rut of using something like the (non-conformal) transformation of Armstrong's problem 5.1.3. This may be just because that is what I'm thinking about at the moment, but it does seem to work.

Problem 5.1.3 gives a homeomorphism of the disk which leaves the boundary fixed. To be precise, one considers $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $h(x)=r(\cos (\theta+$ $2 \pi r), \sin (\theta+2 \pi r))$ where $r=|x|=\sqrt{x_{1}^{2}+x_{2}^{2}}$ and $x=\left(x_{1}, x_{2}\right)=r(\cos \theta, \sin \theta)$. The image of a diameter under this map is indicated in Figure 1. Notice that h restricted to the circle of radius $1 / 2$ is the antipodal map. In particular, all points on $\partial B_{1 / 2}(0)$ are interchanged. This homeomorphism can, of course, be adapted to any disk of radius r and center c by translation and dilation. To be precise, if I want a homeomorphism of the closure of $B_{r}(c)$ which fixes the boundary and interchanges all points on $\partial B_{r / 2}(c)$, then I can take $m: B_{r}(c) \rightarrow B_{1}(0)$ by $m(x)=(x-c) / r$ and $\sigma=m^{-1} \circ h \circ m$ does the trick. Let's call $\sigma=\sigma_{r, c}$ the swapping homeomorphism.

Figure 1: The mapping $h: B_{1}(0) \rightarrow B_{1}(0)$

The swapping homeomorphism can be used to interchange p and q if we take

$$
\begin{equation*}
r=|p-q| \quad \text { and } \quad c=\frac{p+q}{2} . \tag{1}
\end{equation*}
$$

Notice that c in this case is the midpoint of the segment between p and q and $|p-c|=|q-c|=|p-q| / 2$. The problem is that σ fixes $\partial B_{r}(c)$ rather than $\partial B_{1}(0)$. Nevertheless, we can swap some pairs of points in $B_{1}(0)$ at this point. Namely, if we make the assignment (1) and it turns out that $B_{r}(c) \subset \subset B_{1}(0)$, then we can take

$$
\phi(x)= \begin{cases}\sigma(x), & x \in \overline{B_{r}(c)} \\ \operatorname{id}(x), & x \in \overline{B_{1}(0)} \backslash B_{r}(c) .\end{cases}
$$

The symbol $\subset \subset$ is a shorthand way to say $\overline{B_{r}(c)} \subset B_{1}(0)$; notice you've got the closure on the left and the interior of $B_{1}(0)$ on the right. When this happens, you've got $C=\overline{B_{1}(0)} \backslash B_{r}(c)$ is a closed set, and ϕ is continuous by the gluing lemma. In fact, you also get ϕ^{-1}, which is just

$$
\phi^{-1}(x)= \begin{cases}\sigma^{-1}(x), & x \in \overline{\overline{B_{r}(c)}} \\ \operatorname{id}(x), & x \in \overline{B_{1}(0)} \backslash B_{r}(c),\end{cases}
$$

is continuous by the gluing lemma as well.
This brings us first to the question of when we have $B_{r}(c) \subset \subset B_{1}(0)$ under the assignment (1). The basic answer is when $r+|c|<1$. This means

$$
|p-q|+\left|\frac{p+q}{2}\right|<1
$$

This looks like a fairly complicated relation between the points p and q, but one thing we can notice is that if $|p|$ and $|q|$ are small enough, then it will always hold. In fact, by the triangle inequality

$$
|p-q|+\left|\frac{p+q}{2}\right| \leq \frac{3}{2}(|p|+|q|)
$$

so as long as $|p|+|q|<2 / 3$ we are in good shape to apply ϕ on $\overline{B_{1}(0)}$ and swap our points.

But what if $|p|+|q| \geq 2 / 3$? In that case, we can use a preliminary homeomorphism to "suck" the outer portion of the disk toward the origin. For this we want a homeomorphism f of $[0,1]$ (the interval of the radii) which leaves the endpoints fixed and is increasing but has $f(r) \ll r$ at least for most of the interval. You should recall that $f(r)=r^{n}$ for large integers n does this. Thus, our preliminary "sucky" homeomorphism can be $\nu(x)=$ $r^{n}(\cos \theta, \sin \theta)$ where r and θ are defined near the beginning of this solution. If $|p|^{n}+|q|^{n}<2 / 3$, then n is large enough. Then we can take $r=|\nu(p)-\nu(q)|$ and $c=(\nu(p)+\nu(q)) / 2$ in our definition of the swapping homeomorphism σ and

$$
\psi: \overline{B_{1}(0)} \rightarrow \overline{B_{1}(0)} \quad \text { by } \quad \psi(x)= \begin{cases}\nu^{-1} \circ \sigma \circ \nu(x), & x \in \nu^{-1}\left(\overline{B_{r}(c)}\right) \\ \operatorname{id}(x), & x \in \overline{B_{1}(0)} \backslash \nu^{-1}\left(B_{r}(c)\right) .\end{cases}
$$

Since ν is a continuous (and open and closed) map, essentially the same gluing lemma argument that applied to ϕ shows that ψ is a homeomorphism fixing $\partial B_{1}(0)$ and interchanging p and q.

Another approach is the following: Take a preliminary homeomorphism h_{1} sending $B_{1}(0)$ to \mathbb{R}^{2}. This will take the boundary out to " ∞." Now move $h_{1}(p)$ and $h_{1}(q)$ to points symmetric about the origin using a Möbius transformation μ that fixes ∞. This will also be a homeomorphism (and a conformal one) of the plane. Then you can swap the points $\mu \circ h_{1}(p)$ and $\mu \circ h_{1}(q)$ with a variant of Armstrong's spiraling transformation that still leaves ∞ fixed. This will be an interesting part. Then using the inverses of h_{1} and μ, you should get a different kind of swapping homeomorphism.

