
Assignment 1: The 1-D Heat Equation (Intro)
Due Tuesday September 12, 2023

John McCuan

Problem 1 (Haberman 1.2.1-3)

(a) Determine the dimensions of lineal heat energy density θ = θ(x, t) for which

∫

b

a

θ(x, t) dx

models the total heat energy in a thin rod found between positions x = a and
x = b.

(b) Consider a (more complicated) thin rod with varying cross-sectional area A =
A(x) and volumetric heat energy density also called θ = θ(x, t). Determine
the expression for the total heat energy between positions x = a and x = b.

(c) Derive a heat equation for the temperature u = u(x, t) in the rod of varying cross-
sectional area from the previous part under the assumption of constant specific
heat capacity c, constant volumetric density ρ, and constant heat conductivity
K.

Problem 2 (Haberman 1.2.8) Give an expression for the total thermal energy in a
rod modeled on an interval 0 ≤ x ≤ ℓ in terms of the temperature u = u(x, t).

Problem 3 If f is a continuous function defined on the interval [0, ℓ] with ℓ > 0 and

∫

b

a

f(x) dx = 0 whenever 0 < a < b < ℓ

then prove f(x) ≥ 0 for every x with 0 < x < ℓ.
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Problem 4 Find a solution u = u(x, t) of the problem






ut = uxx, 0 < x < ℓ

u(0, t) = T1, t > 0
u(ℓ, t) = T2, t > 0

where T1 and T2 are given constants.

Problem 5 Find as many solutions u = u(x, t) as you can to the problem
{

ut = uxx, 0 < x < ℓ

ux(0, t) = 1 = ux(ℓ, t), t > 0.

Do you think you have found all solutions?

Problem 6 Let u = u(x, t) be a solution to the problem
{

ut = uxx, 0 < x < ℓ

ux(0, t) = 0 = ux(ℓ, t), t > 0.

Show the quantity (essentially the total thermal energy)

∫

ℓ

0

u(x, t) dx

is conserved, i.e., does not change with time.

Problem 7 (Haberman Exercise 1.3.1) One version of Newton’s law of cooling states
that the heat flux at the end of a thin metal rod (conducting heat) is proportional to the
difference between the temperature u(ℓ, t) at the end and the external temperature
T = T (t) adjacent to the end. Use Fourier’s law of heat conduction (with Newton’s
law of cooling) to derive an appropriate boundary flux condition for the 1-D heat
equation.

Problem 8 (Haberman 1.4.1) Find the equilibrium solution associated with the prob-
lem















ut = uxx + x2, 0 < x < ℓ

u(0, t) = T1, t > 0
ux(ℓ, t) = 0, t > 0
u(x, 0) = u0(x), 0 ≤ x ≤ ℓ.

Here T1 is a given constant and u0 is a given function.
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Problem 9 (Haberman 1.4.2) Consider the equilibrium/steady state solution U of
the one-dimensional heat equation on the interval 0 ≤ x ≤ ℓ with constant conductivity
K, fixed boundary temperatures U(0) = 0 = U(ℓ), and internal thermal energy rate-
density generation/forcing modeled by Q(x) = x.

(a) Find an expression for the heat energy generated per unit time along the entire
rod.

(b) Find an expression for the rate of heat energy flowing out of the rod at the ends
x = 0 and at x = ℓ.

(c) What relation should hold between your answers to the first two parts?

Problem 10 (Haberman 1.4.3) Determine the equilibrium temperature distribution
for a one-dimensional rod consisting of two different materials in perfect thermal
contact at x = 1 and satisfying the following conditions:

(i) The material modeled on 0 ≤ x < 1 has cρ = 1 and K = 1 (where c is the specific
heat capacity, ρ is the density, and K is the conductivity). Also on 0 ≤ x < 1
there is an internal unit heat source with constant density per time given by
Q = 1.

(ii) The material modeled on 1 < x ≤ 2 has cρ = 2 and K = 2 and Q = 0.

(iii) u(0) = 0 = u(2).

Perfect thermal contact means the temperature u = u(x) is continuous at x = 1
and the thermal energy exiting the portion of the rod modeled by 0 < x < 1 is equal
to the thermal energy entering the portion of the rod modeled by 1 < x < 2. Be
careful: This does not mean U ′(1−) = U ′(1+). You need to use Fourier’s law. See
also Haberman 1.3.2.
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