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John McCuan

October 11, 2021

Problem 1 (scaling in space and time) Consider the initial/boundary value problems
for the 1-D heat equation:















ut = kuxx on (0, L)× (0, T )
u(0, t) = u0(t), 0 < t < T
u(L, t) = u1(t), 0 < t < T
u(x, 0) = g(x), 0 < x < L

(1)

and














Ut = Uxx on (0,M)× (0, S)
U(0, t) = U0(t), 0 < t < S
U(M, t) = U1(t), 0 < t < S
U(x, 0) = G(x), 0 < x < M.

(2)

This problem considers the equivalence of these two problems under various scalings
in space and time. The term equivalence will be explained below.

(a) Since scaling is a kind of change of variables, things may be clearer in your mind
if you use different names for the variables in one of the problems. Rewrite the
second problem (2) in terms of spatial and time variables ξ and τ .

(b) (scaling in time) Choose an appropriate scaling of time t = βτ and leave x = ξ
for some β > 0 to show that given a solution u = u(x, t) of (1), there are
appropriate choices of the functions U0, U1, G (and the positive constants M
and S) such that U = U(x, τ) solves (2). (You need to find β, U0, U1, G, M ,
and S, and then show the function U is a solution of (2).)
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Notice that when I define a change of variables by t = βτ here, this is a change of
variables (x, t) 7→ (ξ, τ) = (x, τ), i.e., a mapping of the given domain (0, L) ×
(0, T ) = {(x, t) : 0 < x < L, 0 < t < T} to the secondary domain (0,M) ×
(0, S) = {(ξ, τ) : 0 < ξ < M, 0 < τ < S}.

(c) Note that your choices of β, U0, U1, G, M , and S in part (b) above (in terms of
relations with u0, u1, g, L and T ) determine the initial/boundary value problem
(2). Show that given a solution U = U(ξ, τ) of (2), those same relations can
be used to define a solution u = u(x, t) of (1). (Here you can find u0, u1, g, L
and T and note that they are determined by precisely the same relaitons used in
part (b). Then show the same change of variables (or more precisely the inverse
(ξ, τ) 7→ (x, t)) determines a solution u = u(x, t) of the first problem (1).

The relations involved in parts (b) and (c) above, both those that were defined
and those that were verified, constitute what we mean by saying the problems
(1) and (2) are equivalent under the given change of variables.

(d) (scaling in space) Use a scaling in space x = αξ, t = τ to find a problem (2)
equivalent to (1).

(e) (scaling in both space and time) Determine a family of problems (2) for the
equation Uτ = Uξξ which are all equivalent to (1), and hence equivalent to each
other, determined by scaling in both space and time.

Problem 2 (heat flow out of a rod)

(a) Solve the initial/boundary value problem for the heat equation







ut = uxx on (0, π)× (0,∞)
u(0, t) = 0 = u(π, t), t > 0
u(x, 0) = sin x, 0 < x < π.

(b) Use mathematical software, i.e., Matlab, Mathematica, Maple, Octave, or some-
thing similar, to plot the graph

G = {(x, t, u(x, t)) : (x, t) ∈ (0, π)× (0, T )}

of your solution from part (a).
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(c) Use mathematical software to produce an animation of the graph

Gt = {(x, u(x, t)) : 0 < x < π}

with time as the animation variable. This is called the time animation or
time evolution of the temperature.

Problem 3 (laminar heat flow out of a rectangle)

(a) Solve the initial/boundary value problem for the heat equation







ut = ∆u on U × (0,∞)
u(x, y, t) = 0 on ∂U for t > 0
u(x, y, 0) = sin(πx/2) sin(2πy) for (x, y) ∈ U

where U = (0, 2)× (0, 1) ⊂ R
2

(b) Use mathematical software to produce a time animation of the graph

Gt = {(x, y, u(x, y, t)) : (x, y) ∈ U}.

Problem 4 (superposition, Haberman 2.4.1)

(a) Solve the initial/boundary value problem for the 1-D heat equation







ut = uxx on (0, 2)× (0,∞)
u(0, t) = 0 = u(2, t), t > 0
u(x, 0) = 1− |x− 1|, 0 < x < 2

using separation of variables and superposition. (Your solution should be given
as an appropriate Fourier series.)

(b) Use mathematical software to plot the graph of your solution. (What you should
do here is plot a partial sum of your Fourier series solution with enough terms
so that the graphic representation stabilizes. That is, the picture you get does
not change visibly in any noticeable way if you add additional terms. This is the
procedure you will always need to use when you are plotting (something involved
with) a Fourier series.)

(c) Use mathematical software to produce a time animation of your solution. Again,
check for visual/graphic stabilization.
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Problem 5 (time dependent boundary values) Consider the initial/boundary value
problem















ut = uxx on (0, L)× (0,∞)
u(0, t) = t, t > 0
u(L, t) = −t, t > 0
u(x, 0) = 0, 0 < x < L

(3)

for the 1-D heat equation.

(a) Describe/discuss a physical heat conduction problem modeled by this problem.

(b) Find an initial/boundary value problem






vt = vxx + f(x) on (0, L)× (0,∞)
v(0, t) = 0 = v(L, t), t > 0
v(x, 0) = 0, 0 < x < L.

(4)

equivalent to (3). Hint: Set v = u−w for an appropriate function w = w(x, t).

(c) Describe/discuss a physical heat conduction problem modeled by the problem (4).

Problem 6 (Haberman 2.4.2)

(a) Solve the initial/boundary value problem for the heat equation






ut = uxx on (0, L)× (0,∞)
ux(0, t) = 0 = u(L, t), t > 0
u(x, 0) = L2/4− (x− L/2)2, 0 < x < L.

(b) Choose a positive value of L, and use mathematical software to plot your solution
from part (a).

(c) With your choice of L > 0 from part (b), use mathematical software to produce
a time animation of your solution.

Problem 7 (Haberman 2.5.1) Let R = (0, L)×(0,M) be a fixed rectangle in the plane
modeling a heat conducting plate. Solve the boundary value problem for Laplace’s
equation (equilibrium solution of the heat equation):























∆u = 0, (x, y) ∈ R
u(x, 0) = Lx− x2, 0 < x < L
u(x,M) = 0, 0 < x < L
u(0, y) = 0, 0 < y < M
u(L, y) = 0, 0 < y < M.

(5)
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Problem 8 (Haberman 2.5.2) Let R = (0, 2)× (0, 1) be a fixed rectangle in the plane
modeling a heat conducting plate. Consider the boundary value problem for Laplace’s
equation (equilibrium solution of the heat equation):























∆u = 0, (x, y) ∈ R
uy(x, 0) = 0, 0 < x < 2
uy(x, 1) = g(x), 0 < x < 2
ux(0, y) = 0, 0 < y < 1
ux(2, y) = 0, 0 < y < 1.

(6)

(a) Under what conditions does there exist a separated variables solution of this prob-
lem. Hint(s): Plug in a function u of the form u(x, y) = A(x)B(y).

(b) Your answer in part (a) should have told you that you can solve the problem
(with a separated variables solution) only in situations when the function g in
the initial condition has one of a countable collection

g1, g2, g3, . . .

of particular special forms. Reasoning physically, what condition must g satisfy
in general for there to be a solution to this equilibrium problem? Do the functions
g1, g2, g3, . . . all satisfy this condition?

(c) Make a specific choice of g satisfying the general condition of part (b) but which
is not one of the functions g1, g2, g3, . . .. Solve the problem for this choice of
g. Hint: If you want to make things easy on yourself, you might choose g to
be a certain discontinuous function. (Such a choice might be kind of interest-
ing/exciting anyway, don’t you think?)

(d) Note that with the choice L = 2 and M = 1, your solution U7 of problem (5) is
given by an explicit Fourier series, the partial sums of which could be plotted
using mathematical software. Let U8 be the solution of (6) you found with your
choice of g. Write down the boundary value problem for Laplace’s equation
satisfied by u = U7 + U8. Use mathematical software to plot the solution u =
U7 + U8.

Problem 9 (Haberman 2.5.3) Solve Laplace’s equation (in polar coordinates, see
Assignment 2 Problem 5(b)) for an equilibrium temperature distribution w = w(r, θ)
outside the disk Ba(0) = {(x, y) : x2 + y2 < a2}, that is, on the exterior domain

U = {(x, y) : x2 + y2 > a2},
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subject to the boundary condition w(a, θ) = ln 2 + 4 cos 3θ.

Problem 10 (Uniqueness of solutions for the Dirichlet problem, Haberman 2.5.12)

(a) Use the coordinate expression

divv =

n
∑

j=1

∂vj
∂xj

for the divergence of a vector field v = (v1, v2, . . . , vn) defined on a region U ⊂
R

n to derive the product formula

div(φv) = Dφ · v + φ divv

for the scaled field φv where φ : U → R is a scalar function.

(b) Obtain an identity for
∫

U

w∆w.

Hint(s): Use part (a) and remember ∆w = divDw.

(c) Prove the boundary value problem

{

∆u = f on U
u∣
∣

∂U

= g (7)

for Poisson’s equation has a unique solution. The boundary problem (7) with
prescribed boundary values is called the Dirichlet problem for Poisson’s equa-
tion. Hint(s): Note that your identity in (b) holds for any function. Take
w = u− v where u and v are two solutions of (7).
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