Assignment 3: The Heat Equation Due Tuesday September 26, 2023

John McCuan

Problem 1 (Haberman Exercise 1.4.10) Assume heat conduction is modeled in a thin metal rod by

 $c\rho u_t = (Ku_x)_x + 4$ on $(0, \ell) \times (0, \infty)$

where $c\rho = K = 1$. If u(x, 0) = f(x) and

$$\frac{\partial u}{\partial x}(0,t) = 5 = \frac{\partial u}{\partial x}(\ell,t) - 1,$$

Calculate the total thermal energy modeled between x = 0 and $x = \ell$ as a function of time.

Problem 2 (Haberman 1.5) State Fourier's law of heat conduction in n dimensions and determine from it an appropriate boundary condition to model heat conduction in an n-dimensional region (modeled by) R with **insulated boundary**.

Problem 3 (Haberman 1.5.16) Let R be a fixed region in space modeling a medium in which heat diffuses according to

$$\begin{cases} c\rho u_t = K\Delta u, & (x,t) \in R \times (0,\infty) \\ u(x,0) = u_0, & x \in R \\ Du(x,t) \cdot \vec{n} = g(x), & (x,t) \in \partial R \times (0,\infty) \end{cases}$$

where c, ρ , and K are given positive constants and $u_0 = u_0(x)$ and g = g(x) are given functions. Assuming the law of specific heat $\theta = c\rho u$ for the thermal energy density θ find an expression for the total thermal energy modeled in R at time t in terms of u_0 and g. Hint(s): Differentiate under the integral sign, use the equation. Then use the divergence theorem and, finally, integrate with respect to time. Problems 4-8 are about the initial/boundary value problem

$$\begin{cases} u_t = k u_{xx}, & 0 < x < \ell \\ u_x(0,t) = 0, & t > 0 \\ u_x(\ell,t) = 0, & t > 0 \\ u(x,0) = g(x), & 0 \le x \le \ell. \end{cases}$$
(1)

Here g is a given initial function.

Problem 4 (initial condition)

- (a) Find an initial function g compatible (to first order) with the insulated boundary conditions of (1).
- (b) Find an initial function g satisfying g(0) = 0 but $g'(0) \neq 0$ and $g'(\ell) = 0$.

Problem 5 (separated variables solution) A **separated variables** solution is a solution of the PDE in (1) having the form u(x,t) = A(x)B(t). That is, u is a product of two functions A and B where the function A depends only on the spatial variable x and B is a function only of time.

(a) Substitute a function u of the given form into the PDE and algebraically manipulate what you get so it takes the form

$$\alpha(x) = \beta(t). \tag{2}$$

- (b) What assumption(s) did you need to make on the functions A and B in order to obtain the form (2)?
- (c) What does the condition (2) tell you about the functions α and β ? Hint: Differentiate with respect to x.

Problem 6 (Sturm-Liouville problem)

- (a) Derive from the condition (2) and part (c) of Problem 5 an ordinary differential equation for the function A = A(x). Hint: Your ODE should have a free/unknown constant c.
- (b) Derive boundary conditions for your ODE for A = A(x) from the boundary conditions in (1).

(c) What assumption(s) do you need to make on the function B = B(t) in order to get the boundary conditions in part (b)?

Problem 7 (Sturm-Liouville spectral sequence) Recall that the ODE you obtained in part (a) of Problem 6 above and the associated boundary value problem for A = A(x) had in it an unknown parameter c.

- (a) Consider the case where the parameter c satisfies c = 0. Find the resulting separated variables solution in this case and determine all special cases of (1) under which this leads to a complete solution.
- (b) Show there is a countable sequence of nonzero values for the parameter c for which you can solve the boundary value problem for your ODE from parts (a) and (b) of Problem 6. Hint: Consider cases c < 0 and c > 0. In each case, find the general solution of your ODE for A = A(x).
- (c) For which special cases of (1) can you find a separated variables solution?

Problem 8 (superposition)

- (a) Determine two distinct non-constant linearly independent¹ initial functions g_1 and g_2 for which you can find a separated variables solution of the entire initial/boundary value problem (1) when $g = g_j$ for j = 1, 2.
- (b) Animate the evolution of your solution for $g = g_1$.
- (c) Solve the initial/boundary value problem (1) when $g = ag_1 + bg_2$ for some constants $a, b \in \mathbb{R}$.
- **Problem 9** (Green's theorem; Haberman Exercise 1.5.7)
- (a) State Green's theorem. (Look it up and be sure you understand what it says if necessary.)
- (b) Derive the heat equation in two dimensions using Green's theorem. Hint: Rotate your vector fields on ∂R by an angle $\pi/2$.

¹In this case, **linearly independent** simply means that if $ag_1 + bg_2$ is the zero function, then a = b = 0, that is, neither of the functions is a multiple of the other.

Problem 10 (Haberman Exercise 1.5.1) Let $\alpha = \alpha(x, y, z, t)$ model the concentration of ink particles in a volume V of still water. Derive an equation for the evolution of a given initial concentration $g: V \to \mathbb{R}$ within V under the assumption that the flux of ink particles is proportional to the spatial gradient $D\alpha$ of the concentration. Introduce appropriate proportionality constants and give physical dimensions for all quantities. Hint: Start with a conservation law for the evolution of particles on an arbitrary subregion R of V. Use the divergence theorem.

Afterthought: Go back and think carefully about the assumptions of Problem 5 part (b) and Problem 6 part (c). What is the consequence if these assumptions fail? (Is it possible to find other non-trivial separated variables solutions you might have missed?)