
Assignment 3: The Heat Equation

Due Tuesday September 26, 2023

John McCuan

Problem 1 (Haberman Exercise 1.4.10) Assume heat conduction is modeled in a
thin metal rod by

cρut = (Kux)x + 4 on (0, ℓ)× (0,∞)

where cρ = K = 1. If u(x, 0) = f(x) and

∂u

∂x
(0, t) = 5 =

∂u

∂x
(ℓ, t)− 1,

Calculate the total thermal energy modeled between x = 0 and x = ℓ as a function
of time.

Problem 2 (Haberman 1.5) State Fourier’s law of heat conduction in n dimensions
and determine from it an appropriate boundary condition to model heat conduction
in an n-dimensional region (modeled by) R with insulated boundary.

Problem 3 (Haberman 1.5.16) Let R be a fixed region in space modeling a medium
in which heat diffuses according to







cρut = K∆u, (x, t) ∈ R× (0,∞)
u(x, 0) = u0, x ∈ R
Du(x, t) · ~n = g(x), (x, t) ∈ ∂R × (0,∞)

where c, ρ, and K are given positive constants and u0 = u0(x) and g = g(x) are given
functions. Assuming the law of specific heat θ = cρu for the thermal energy density
θ find an expression for the total thermal energy modeled in R at time t in terms of
u0 and g. Hint(s): Differentiate under the integral sign, use the equation. Then use
the divergence theorem and, finally, integrate with respect to time.
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Problems 4-8 are about the initial/boundary value problem















ut = kuxx, 0 < x < ℓ
ux(0, t) = 0, t > 0
ux(ℓ, t) = 0, t > 0
u(x, 0) = g(x), 0 ≤ x ≤ ℓ.

(1)

Here g is a given initial function.

Problem 4 (initial condition)

(a) Find an initial function g compatible (to first order) with the insulated boundary
conditions of (1).

(b) Find an initial function g satisfying g(0) = 0 but g′(0) 6= 0 and g′(ℓ) = 0.

Problem 5 (separated variables solution) A separated variables solution is a so-
lution of the PDE in (1) having the form u(x, t) = A(x)B(t). That is, u is a product
of two functions A and B where the function A depends only on the spatial variable
x and B is a function only of time.

(a) Substitute a function u of the given form into the PDE and algebraically manip-
ulate what you get so it takes the form

α(x) = β(t). (2)

(b) What assumption(s) did you need to make on the functions A and B in order to
obtain the form (2)?

(c) What does the condition (2) tell you about the functions α and β? Hint: Differ-
entiate with respect to x.

Problem 6 (Sturm-Liouville problem)

(a) Derive from the condition (2) and part (c) of Problem 5 an ordinary differ-
ential equation for the function A = A(x). Hint: Your ODE should have a
free/unknown constant c.

(b) Derive boundary conditions for your ODE for A = A(x) from the boundary
conditions in (1).
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(c) What assumption(s) do you need to make on the function B = B(t) in order to
get the boundary conditions in part (b)?

Problem 7 (Sturm-Liouville spectral sequence) Recall that the ODE you obtained in
part (a) of Problem 6 above and the associated boundary value problem for A = A(x)
had in it an unknown parameter c.

(a) Consider the case where the parameter c satisfies c = 0. Find the resulting
separated variables solution in this case and determine all special cases of (1)
under which this leads to a complete solution.

(b) Show there is a countable sequence of nonzero values for the parameter c for
which you can solve the boundary value problem for your ODE from parts (a)
and (b) of Problem 6. Hint: Consider cases c < 0 and c > 0. In each case, find
the general solution of your ODE for A = A(x).

(c) For which special cases of (1) can you find a separated variables solution?

Problem 8 (superposition)

(a) Determine two distinct non-constant linearly independent1 initial functions g1
and g2 for which you can find a separated variables solution of the entire ini-
tial/boundary value problem (1) when g = gj for j = 1, 2.

(b) Animate the evolution of your solution for g = g1.

(c) Solve the initial/boundary value problem (1) when g = ag1 + bg2 for some con-
stants a, b ∈ R.

Problem 9 (Green’s theorem; Haberman Exercise 1.5.7)

(a) State Green’s theorem. (Look it up and be sure you understand what it says if
necessary.)

(b) Derive the heat equation in two dimensions using Green’s theorem. Hint: Rotate
your vector fields on ∂R by an angle π/2.

1In this case, linearly independent simply means that if ag1 + bg2 is the zero function, then

a = b = 0, that is, neither of the functions is a multiple of the other.
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Problem 10 (Haberman Exercise 1.5.1) Let α = α(x, y, z, t) model the concentra-
tion of ink particles in a volume V of still water. Derive an equation for the evolution
of a given initial concentration g : V → R within V under the assumption that the
flux of ink particles is proportional to the spatial gradient Dα of the concentration.
Introduce appropriate proportionality constants and give physical dimensions for all
quantities. Hint: Start with a conservation law for the evolution of particles on an
arbitrary subregion R of V . Use the divergence theorem.

Afterthought: Go back and think carefully about the assumptions of Problem 5
part (b) and Problem 6 part (c). What is the consequence if these assumptions fail?
(Is it possible to find other non-trivial separated variables solutions you might have
missed?)
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