
Assignment 3 = Exam 1:
The Heat Equation (separation of variables)

Due Tuesday October 12, 2021

John McCuan

November 22, 2021

Problem 1 (scaling in space and time) Consider the initial/boundary value problems
for the 1-D heat equation:















ut = kuxx on (0, L)× (0, T )
u(0, t) = u0(t), 0 < t < T
u(L, t) = u1(t), 0 < t < T
u(x, 0) = g(x), 0 < x < L

(1)

and














Ut = Uxx on (0,M)× (0, S)
U(0, t) = U0(t), 0 < t < S
U(M, t) = U1(t), 0 < t < S
U(x, 0) = G(x), 0 < x < M.

(2)

This problem considers the equivalence of these two problems under various scalings
in space and time. The term equivalence will be explained below.

(a) Since scaling is a kind of change of variables, things may be clearer in your mind
if you use different names for the variables in one of the problems. Rewrite the
second problem (2) in terms of spatial and time variables ξ and τ .

(b) (scaling in time) Choose an appropriate scaling of time t = βτ and leave x = ξ
for some β > 0 to show that given a solution u = u(x, t) of (1), there are
appropriate choices of the functions U0, U1, G (and the positive constants M
and S) such that U = U(x, τ) solves (2). (You need to find β, U0, U1, G, M ,
and S, and then show the function U is a solution of (2).)
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Notice that when I define a change of variables by t = βτ here, this is a change of
variables (x, t) 7→ (ξ, τ) = (x, τ), i.e., a mapping of the given domain (0, L) ×
(0, T ) = {(x, t) : 0 < x < L, 0 < t < T} to the secondary domain (0,M) ×
(0, S) = {(ξ, τ) : 0 < ξ < M, 0 < τ < S}.

(c) Note that your choices of β, U0, U1, G, M , and S in part (b) above (in terms of
relations with u0, u1, g, L and T ) determine the initial/boundary value problem
(2). Show that given a solution U = U(ξ, τ) of (2), those same relations can
be used to define a solution u = u(x, t) of (1). (Here you can find u0, u1, g, L
and T and note that they are determined by precisely the same relaitons used in
part (b). Then show the same change of variables (or more precisely the inverse
(ξ, τ) 7→ (x, t)) determines a solution u = u(x, t) of the first problem (1).

The relations involved in parts (b) and (c) above, both those that were defined
and those that were verified, constitute what we mean by saying the problems
(1) and (2) are equivalent under the given change of variables.

(d) (scaling in space) Use a scaling in space x = αξ, t = τ to find a problem (2)
equivalent to (1).

(e) (scaling in both space and time) Determine a family of problems (2) for the
equation Uτ = Uξξ which are all equivalent to (1), and hence equivalent to each
other, determined by scaling in both space and time.

Problem 2 (heat flow out of a rod)

(a) Solve the initial/boundary value problem for the heat equation







ut = uxx on (0, π)× (0,∞)
u(0, t) = 0 = u(π, t), t > 0
u(x, 0) = sin x, 0 < x < π.

(b) Use mathematical software, i.e., Matlab, Mathematica, Maple, Octave, or some-
thing similar, to plot the graph

G = {(x, t, u(x, t)) : (x, t) ∈ (0, π)× (0, T )}

of your solution from part (a).
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(c) Use mathematical software to produce an animation of the graph

Gt = {(x, u(x, t)) : 0 < x < π}

with time as the animation variable. This is called the time animation or
time evolution of the temperature.

Problem 3 (laminar heat flow out of a rectangle)

(a) Solve the initial/boundary value problem for the heat equation







ut = ∆u on U × (0,∞)
u(x, y, t) = 0 on ∂U for t > 0
u(x, y, 0) = sin(πx/2) sin(2πy) for (x, y) ∈ U

where U = (0, 2)× (0, 1) ⊂ R
2

(b) Use mathematical software to produce a time animation of the graph

Gt = {(x, y, u(x, y, t)) : (x, y) ∈ U}.

Problem 4 (superposition, Haberman 2.4.1)

(a) Solve the initial/boundary value problem for the 1-D heat equation







ut = uxx on (0, 2)× (0,∞)
u(0, t) = 0 = u(2, t), t > 0
u(x, 0) = 1− |x− 1|, 0 < x < 2

using separation of variables and superposition. (Your solution should be given
as an appropriate Fourier series.)

(b) Use mathematical software to plot the graph of your solution. (What you should
do here is plot a partial sum of your Fourier series solution with enough terms
so that the graphic representation stabilizes. That is, the picture you get does
not change visibly in any noticeable way if you add additional terms. This is the
procedure you will always need to use when you are plotting (something involved
with) a Fourier series.)

(c) Use mathematical software to produce a time animation of your solution. Again,
check for visual/graphic stabilization.
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Problem 5 (time dependent boundary values) Consider the initial/boundary value
problem















ut = uxx on (0, L)× (0,∞)
u(0, t) = t, t > 0
u(L, t) = −t, t > 0
u(x, 0) = 0, 0 < x < L

(3)

for the 1-D heat equation.

(a) Describe/discuss a physical heat conduction problem modeled by this problem.

(b) Find an initial/boundary value problem






vt = vxx + f(x) on (0, L)× (0,∞)
v(0, t) = 0 = v(L, t), t > 0
v(x, 0) = 0, 0 < x < L.

(4)

equivalent to (3). Hint: Set v = u−w for an appropriate function w = w(x, t).

(c) Describe/discuss a physical heat conduction problem modeled by the problem (4).

Problem 6 (Haberman 2.4.2)

(a) Solve the initial/boundary value problem for the heat equation






ut = uxx on (0, L)× (0,∞)
ux(0, t) = 0 = u(L, t), t > 0
u(x, 0) = L2/4− (x− L/2)2, 0 < x < L.

(b) Choose a positive value of L, and use mathematical software to plot your solution
from part (a).

(c) With your choice of L > 0 from part (b), use mathematical software to produce
a time animation of your solution.

Problem 7 (Haberman 2.5.1) Let R = (0, L)×(0,M) be a fixed rectangle in the plane
modeling a heat conducting plate. Solve the boundary value problem for Laplace’s
equation (equilibrium solution of the heat equation):























∆u = 0, (x, y) ∈ R
u(x, 0) = Lx− x2, 0 < x < L
u(x,M) = 0, 0 < x < L
u(0, y) = 0, 0 < y < M
u(L, y) = 0, 0 < y < M.

(5)
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Solution: Setting u = A(x)B(y), we get for the PDE

−
A′′

A
=

B′′

B
= λ.

In this case, I saw the nice boundary conditions A(0) = 0 = A(L) were going to go
with the equation for A, so that’s why I put the negative sign there. This way we get

λj = j2π2/L2 and Aj = sin(jπx/L).

For the equation for Bj, I have a decent boundary value at y = M . For this reason
I’ll “recenter” at y = M and solve B′′ = j2π2B/L2 as

Bj(y) = a cosh

(

jπ

L
(y −M)

)

+ b sinh

(

jπ

L
(y −M)

)

.

The good boundary value gives a = 0. Thus, I attempt a superposition

u(x, y) =

∞
∑

j=1

aj sin

(

jπ

L
x

)

sinh

(

jπ

L
(y −M)

)

.

The last boundary condition requires

u(x, 0) = −

∞
∑

j=1

aj sin

(

jπ

L
x

)

sinh

(

jπ

L
M

)

= Lx− x2.

This means

−aj sinh

(

jπ

L
M

)

L

2
=

∫ L

0

(Lx− x2) sin

(

jπ

L
x

)

dx =
2L3

j3π3
(1− (−1)j).

That is,

aj = −
1

sinh

(

jπ

L
M

)

4L2

j3π3
(1− (−1)j).

This gives the solution,

uj(x, y) = −
8L2

π3

∞
∑

k=0

1

(2k + 1)3sinh

(

jπ

L
M

) sin

(

jπ

L
x

)

sinh

(

jπ

L
(y −M)

)

.

but I can go ahead and graph the solution for the choices L = 2 and M = 1 in
anticipation of the next problem.
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Figure 1: The sum of the first two nonzero terms k = 0 and k = 1 in the Fourier
expansion of u7.

Problem 8 (Haberman 2.5.2) Let R = (0, 2)× (0, 1) be a fixed rectangle in the plane
modeling a heat conducting plate. Consider the boundary value problem for Laplace’s
equation (equilibrium solution of the heat equation):























∆u = 0, (x, y) ∈ R
uy(x, 0) = 0, 0 < x < 2
uy(x, 1) = g(x), 0 < x < 2
ux(0, y) = 0, 0 < y < 1
ux(2, y) = 0, 0 < y < 1.

(6)

(a) Under what conditions does there exist a separated variables solution of this prob-
lem. Hint(s): Plug in a function u of the form u(x, y) = A(x)B(y).

(b) Your answer in part (a) should have told you that you can solve the problem
(with a separated variables solution) only in situations when the function g in
the initial condition has one of a countable collection

g1, g2, g3, . . .

of particular special forms. Reasoning physically, what condition must g satisfy
in general for there to be a solution to this equilibrium problem? Do the functions
g1, g2, g3, . . . all satisfy this condition?

(c) Make a specific choice of g satisfying the general condition of part (b) but which
is not one of the functions g1, g2, g3, . . .. Solve the problem for this choice of
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g. Hint: If you want to make things easy on yourself, you might choose g to
be a certain discontinuous function. (Such a choice might be kind of interest-
ing/exciting anyway, don’t you think?)

(d) Note that with the choice L = 2 and M = 1, your solution U7 of problem (5) is
given by an explicit Fourier series, the partial sums of which could be plotted
using mathematical software. Let U8 be the solution of (6) you found with your
choice of g. Write down the boundary value problem for Laplace’s equation
satisfied by u = U7 + U8. Use mathematical software to plot the solution u =
U7 + U8.

Solution:

(a) We again get −A′′/A = B′′/B = λ for u = A(x)B(y). This time the good
boundary conditions for the A problem are A′(0) = 0 = A′(2). This means we
are going to get a constant and cosines:

Aj = cos

(

jπx

2

)

for j =
j2π2

4
, j = 0, 1, 2, 3, . . . .

Also Bj for j > 0 is given by

Bj(y) = a sinh

(

jπy

2

)

+ b cosh

(

jπy

2

)

so that

B′

j =
jπ

2

[

a cosh

(

jπy

2

)

+ b sinh

(

jπy

2

)]

and the first boundary condition tells us a = 0. We also have B0 is a constant.

We have obtained separated variables solutions

u0 = a0 (constant)

and

uj(x, y) = aj cos

(

jπx

2

)

cosh

(

jπy

2

)

for j = 1, 2, 3, . . .. In order for u0 to be a constant solution, we must have
(u0)y = u′

0 = 0, so that means we must have g(x) ≡ 0. In order for uj for j > 1
to be a solution of the problem, we must have

(uj)y(x, 1) =
jajπ

2
cos

(

jπx

2

)

sinh

(

jπ

2

)

= g(x).
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That is, g is a constant multiple of cos(jπx/2). If g has any of these prescribed
forms:

0 or c cos

(

jπx

2

)

for some constant c,

then we can solve the problem with a separated variables solution.

(b) Physically, the thermal energy entering the rectangle must equal that exiting;
there must be no net thermal flux across the boundary. Three sides have no
flux, i.e., we have insulated boundaries x = 0, x = 2, and y = 0. This means
the remaining boundary component must have zero flux or

0 =

∫

y=1

Du · (0, 1) =

∫ 2

0

(ux(x, 1), uy(x, 1)) · (0, 1) dx =

∫ 2

0

g(x) dx.

That is,
∫ 2

0

g(x) dx = 0. (7)

This is certainly true for g0 = 0. For

gj(x) = c cos

(

jπx

2

)

we also have
∫ 2

0

gj(x) dx =
2c

jπ
sin

(

jπx

2

)

∣

∣

2

x=0

= 0.

Thus, all the boundary value functions gj allowing separated variables solutions
do satisfy the zero flux condition (7).

(c) The simplest function g : (0, 2) → R I can think of with
∫

g = 0 is given by

g(x) =

{

−1, 0 < x < 1
1, 1 < x < 2.

It was nice imagining you would choose the same function and make grading
for me easy. (It was nice while it lasted at any rate.)

Our superposition here is

u(x, y) =

∞
∑

j=0

aj cos

(

jπx

2

)

cosh

(

jπy

2

)

,
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and we want
uy(x, 1) = g(x).

Assuming u is continuous though uy is not, we should have no trouble with
termwise differentiation. You can see this because the coefficients become
smaller in the series for u than that for uy. What we are essentially doing
is integrating termwise to get u. Explicitly, we have

uy(x, 1) =
∞
∑

j=1

jajπ

2
cos

(

jπx

2

)

sinh

(

jπ

2

)

.

That is, we need

2

jπ sinh

(

jπ

2

)

∫ 2

0

g(x) cos

(

jπx

2

)

dx = aj (8)

for j = 1, 2, 3, . . . and no condition on a0. So for my choice of g we get
∫ 2

0

g(x) cos

(

jπx

2

)

dx = −

∫ 1

0

cos

(

jπx

2

)

dx+

∫ 2

1

cos

(

jπx

2

)

dx

=
2

jπ

[

− sin

(

jπ

2

)

− sin

(

jπ

2

)]

= −
4

jπ
sin

(

jπ

2

)

= −
4(−1)k

(2k + 1)π

where j = 2k + 1 is odd, and the even coefficients all vanish.

To repeat: a0 is arbitrary, a2k = 0 for k = 1, 2, 3, . . ., and

a2k+1 =
8(−1)k+1

(2k + 1)2π2 sinh

(

(2k + 1)π

2

) for k = 0, 1, 2, . . . .

Up to an additive constant (or assuming a0 = 0) this solution is

u8(x, y) =
8

π2

∞
∑

k=0

(−1)k+1

(2k + 1)2 sinh

(

(2k + 1)π

2

) cos

(

(2k + 1)πx

2

)

cosh

(

(2k + 1)πy

2

)

.
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And the result looks just about right:

Figure 2: The first twenty-one nonzero terms in the Fourier expansion of u8.

Julian had a different idea. He chose

g(x) =

{

2x, 0 < x < 1
2x− 4, 1 < x < 2.

This seems like a valid choice satisfying
∫

g = 0, so let’s see what we get. For
j > 1, Julian should get

∫ 2

0

g(x) cos

(

jπx

2

)

dx =

∫ 1

0

2x cos

(

jπx

2

)

dx+

∫ 2

1

(2x− 4) cos

(

jπx

2

)

dx

=
8

j2π2

[

−1 + (−1)j + jπ sin

(

jπ

2

)]

= −
8

j2π2

[

2− jπ(−1)k
]

= −
8

(2k + 1)2π2

[

2 + (2k + 1)π(−1)k+1
]

where j = 2k + 1 is odd, and the even coefficients all vanish.

Substituting this value in (8) we get a0 is arbitrary, a2k = 0 for k = 1, 2, 3, . . .,
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and

a2k+1 = −
16

(2k + 1)3π3 sinh

(

(2k + 1)π

2

)

[

2 + (2k + 1)π(−1)k+1
]

for k = 0, 1, 2, . . .. Up to an additive constant (or assuming a0 = 0) this solution
is

uJ(x, y) = −
16

π3

∞
∑

k=0

2 + (2k + 1)π(−1)k+1

(2k + 1)3 sinh

(

(2k + 1)π

2

) cos

(

(2k + 1)πx

2

)

cosh

(

(2k + 1)πy

2

)

.

This should also have no problems with convergence; notice the 1/j3 in the
denominator. And the result also looks just about right:

Figure 3: The first fifty nonzero terms in the Fourier expansion of uJ (Julian’s solu-
tion).

(d) If the previous parts are done correctly, this should be relatively easy. Recall
that (5) and (6) look like this:























∆u7 = 0, (x, y) ∈ R
U7(x, 0) = Lx− x2, 0 < x < L
U7(x,M) = 0, 0 < x < L
U7(0, y) = 0, 0 < y < M
U7(L, y) = 0, 0 < y < M.
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and






















∆U8 = 0, (x, y) ∈ R
(U8)y(x, 0) = 0, 0 < x < 2
(U8)y(x, 1) = g(x), 0 < x < 2
(U8)x(0, y) = 0, 0 < y < 1
(U8)x(2, y) = 0, 0 < y < 1.

The boundary value problem satisfied by u = U7 + U8 is






















∆u = 0, (x, y) ∈ R
u(x, 0) = Lx− x2 + U8(x, 0), 0 < x < 2
u(x, 1) = U8(x, 1), 0 < x < 2
u(0, y) = U8(0, y), 0 < y < 1
u(2, y) = U8(2, y), 0 < y < 1.

(9)

Note that the Dirichlet problem (9) for the Laplace operator on the rectangle
R = (0, 2)× (0, 1) has a unique solution, so this is the boundary value problem
satisfied by u = U7 + U8 uniquely.

NOTE:ADirichlet problem is one where the actual values of the function are
prescribed. Problems (5) and (9) are Dirichlet problems, and they have unique
solutions. Problem (6) considered in Problem 8 is not a Dirichlet problem, but a
Neumann problem in which only derivatives are prescribed on the boundary.
This is why the solution is only unique up to an additive constant.

The only tricky bit here is that we need to use four functions a : (0, 2) → R,
b : (0, 2) → R, α : (0, 1) → R and β : (0, 1) → R for the Dirichlet boundary
values, and we only have these functions in terms of Fourier series. In fact,
we only know these functions up to a choice of an additive constant since they
come from a Neumann problem. It’s not a big deal really, but let us write down
how the values of these functions are given:

We have a(x) = U8(x, 0), that is,

a(x) = a0 +

∞
∑

j=1

aj cos

(

jπx

2

)

with coefficients

aj =
2

jπ sinh

(

jπ

2

)

∫ 2

0

g(x) cos

(

jπx

2

)

dx
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depending in turn on the choice of g. Similarly, b(x) = U8(x, 1), that is,

b(x) = a0 +
∞
∑

j=1

aj cosh

(

jπ

2

)

cos

(

jπx

2

)

,

α(y) = U8(0, y) = a0 +
∞
∑

j=1

aj cosh

(

jπy

2

)

,

and

β(y) = U8(2, y) = a0 +
∞
∑

j=1

(−1)jaj cosh

(

jπy

2

)

.

This means we do not actually get a unique problem for u. We get a family
of problems corresponding to the functions a, b, α and β which are determined
in turn by one real parameter a0 and a funciton g ∈ L2(0, 2). Each of these
problems (given the constant a0 and the function g) has a unique solution.

Taking a0 = 0 and my choice of g the solution u of (9) has graph that looks like
the one on the left in Figure 4. With a0 = c = 0 and Julian’s choice of g the
solution of (9) has graph indicated on the right.

Figure 4: The graph of u = U7 + U8 when g is taken piecewise constant (left) or
piecewise linear (right).

What happens if you change the constant a0? Anything interesting?

13



Problem 9 (Haberman 2.5.3) Solve Laplace’s equation (in polar coordinates, see
Assignment 2 Problem 5(b)) for an equilibrium temperature distribution w = w(r, θ)
outside the disk Ba(0) = {(x, y) : x2 + y2 < a2}, that is, on the exterior domain

U = {(x, y) : x2 + y2 > a2},

subject to the boundary condition w(a, θ) = ln 2 + 4 cos 3θ.

Solution: The main thing is that on the exterior domain there is no requirement that
solutions be bounded at r = 0. Separation of variables u(x, y) = A(r)B(θ) gives

1

r

∂

∂r

(

r
∂

∂r
(AB)

)

+
1

r2
∂2

∂θ2
(AB) = 0.

See Haberman p. 304 (for example). That is,

−
Bθθ

B
=

r(rAr)r
A

= λ.

This gives B with periodic boundary conditions is given by cos(jθ) and/or sin(jθ)
with λj = j2, and the radial ODE is

r2A′′ + rA′ − j2A = 0

which is an Euler equation unless j = 0.
When j = 0, we get rA′′ + A′ = 0 so that

A′′

A′
=

d

dr
ln(A′) = −

1

r
or lnA′ = A′(a)− ln r + ln a.

That is,

A′ =
c

r
and A = A(a) + c ln r − c ln a

where c = aeA
′(a). The θ equation B′′ = 0 with periodic boundary conditions gives

B is constant in this case, so the basis of solutions gives something interesting with
regard to the constant boundary value ln 2. To make this simple, we can take also
a = 2. Then we get constant solutions for the j = 0 mode along with ln r as a
solution, and two distinct solutions

u1(x, y) = ln 2 and u2(x, y) = ln
√

x2 + y2
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for the exterior boundary value problem

{

∆u = 0, on R
2\B2(0)

u(x, y) = ln 2, x2 + y2 = 4.

More generally, we get non-uniqueness for the exterior problem under consideration
using

u1(x, y) ≡ ln 2 and u2(x, y) = ln 2 + c ln

√

x2 + y2

a
.

This was, in some sense, the main point of this problem, especially with respect to
Problem 10 below. Notice that we get the constant solution u1 here by taking c = 0
in the solution u2.

Taking A = rα, we get

α(α− 1)rα + αrα − j2rα = 0 or α = ±j.

On the interior domain we would throw out α = −j to avoid a singularity, but on
the exterior domain,

A(r) = c1r
−j + c2r

j.

Taking a look at the boundary values

w(a, θ) = ln 2 + 4 cos(3θ)

in our original problem, we can see that we’ve already taken care of the possibility of
the constant ln 2, and we are particularly interested in the case j = 3. In that case,
we have a solution

u3(x, y) =
(c1
r3

+ c2r
3
)

cos(3θ),

and we are interested in any values of the constants c1 and c2 for which

c1
a3

+ c2a
3 = 4.

There is again a one parameter family of such solutions with c2 = 4/a3 − γ/a6 and
c1 = γ arbitrary.
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Combining these observations, we obtain a two-parameter family of solutions of
this problem: For any c, γ ∈ R,

u(x, y) = ln 2 + c ln

√

x2 + y2

a
+

[

γ

r3
+

1

a3

(

4−
γ

a3

)

r3
]

cos(3θ)

= ln 2 + c ln

√

x2 + y2

a
+

[

γ

r3
+

1

a3

(

4−
γ

a3

)

r3
]

[cos3 θ − 3 cos θ sin2 θ]

= ln 2 + c ln

√

x2 + y2

a
+

[

γ

(x2 + y2)3
+

1

a3

(

4−
γ

a3

)

]

[x3 − 3xy2].

Problem 10 (Uniqueness of solutions for the Dirichlet problem, Haberman 2.5.12)

(a) Use the coordinate expression

divv =

n
∑

j=1

∂vj
∂xj

for the divergence of a vector field v = (v1, v2, . . . , vn) defined on a region U ⊂
R

n to derive the product formula

div(φv) = Dφ · v + φ divv

for the scaled field φv where φ : U → R is a scalar function.

(b) Obtain an identity for
∫

U

w∆w.

Hint(s): Use part (a) and remember ∆w = divDw.

(c) Prove the boundary value problem

{

∆u = f on U
u∣
∣

∂U

= g (10)

for Poisson’s equation has a unique solution. The boundary problem (10) with
prescribed boundary values is called the Dirichlet problem for Poisson’s equa-
tion. Hint(s): Note that your identity in (b) holds for any function. Take
w = u− v where u and v are two solutions of (10).
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Solution:

(a)

div(φv) =

n
∑

j=1

∂

∂xj

(φvj)

=
n

∑

j=1

(

∂φ

∂xj

vj + φ
∂vj
∂xj

)

=

n
∑

j=1

∂φ

∂xj

vj +

n
∑

j=1

φ
∂vj
∂xj

= Dφ · v + φ
n

∑

j=1

∂vj
∂xj

= Dφ · v + φ div v.

(b)
∫

U

w∆w =

∫

U

w divDw

=

∫

U

[div(wDw)−Dw ·Dw

=

∫

U

div(wDw)−

∫

U

|Dw|2

=

∫

∂U

UwDw · n−

∫

U

|Dw|2.

That’s the identity:
∫

U

w∆w =

∫

∂U

UwDw · n−

∫

U

|Dw|2.

(c) Putting w = u− v and applying the identity, we have

w∣
∣

∂U

≡ 0.

Thus, since ∆w = 0,
∫

U

|Dw|2 = 0.
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This means Dw ≡ 0 from which it follows that on a connected open domain U
w is constant. A nice technical proof of this assertion is as follows: Let x0 ∈ U
so that w0 = w(x0) is a value taken by w. Consider

A = {x ∈ U : w(x) = w0}.

This set is closed because the complement

{x ∈ U : w(x) < w0} ∪ x ∈ U : w(x) > w0} (11)

is a union of open sets. (Each of the sets in (11) is easily seen to be open by
continuity.) On the other hand, given x ∈ A, there is some open ball Br(x)
with Br(x) ⊂ A. If p ∈ Br(x), then the segment connecting x and p lies also
in Br(x), and hence in U . Therefore, we can apply the fundamental theorem of
calculus and the chain rule as follows:

w(x)− w0 = w(p)− w(x)

=

∫ 1

0

d

dt
w((1− t)x+ tp) dt

=

∫ 1

0

Dw((1− t)x+ tp) · (p− x) dt

= 0.

The vanishing of the last inequality follows since Dw ≡ 0. This means w takes
the value w0 on all of Br(x), which in turn means A is an open set.

Now, the definition of a set being connected is that it cannot be written as a
union of disjoint, nonempty, open sets. But note that since A is both open and
closed, the complement of A is also both open and closed. But

U = A ∪ Ac,

U is connected, and we know A is nonempty. This means Ac must be empty,
i.e., there are no points x in U for which w(x) 6= w0.

Note: It can be shown that an open connected subset of Rn is also path con-
nected. I haven’t stated the definition of what it means to be path connected,
but you can guess. An alternative proof that w is constant may be given using
the fact that U is path connected. Also note that while the equivalence of con-
nected and path connected holds for open sets in R

n it does not hold in general.
There exist connected sets which are not path connected.
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Finally, knowing w is constant, the constant value must be that attained on the
boundary which is w = 0. This means, of course, that u ≡ v as desired.

Note also that the same reasoning applies to the Neumann problem for which

Du · n∣
∣

∂U

≡ 0,

but the conclusion is not strict uniqueness. One obtains Dw ≡ 0 which implies
w is constant as before. But the constant does not need to be zero. One
concludes: Given two solutions u and v of the Neumann problem in which the
normal derivative Du ·n is prescribed along the boundary is unique up to an
additive constant, that is, given two solutions u and v, one has that there
exists a constant c for which v = u+ c.
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