Assignment 4:
 The Heat Equation and Laplace's Equation (separation of variables) Due Tuesday October 26, 2021

John McCuan

October 26, 2021

Problem 1 (1-D Heat Equation, Haberman 2.4.1) Solve the initial/boundary value problem for the 1-D heat equation

$$
\begin{cases}u_{t}=u_{x x} & \text { on }(0, L) \times(0, \infty) \\ u_{x}(0, t)=0=u_{x}(L, t), & t>0 \\ u(x, 0)=6+4 \cos (3 \pi x / L), & 0<x<L\end{cases}
$$

Problem 2 (1-D heat equation, Haberman 2.4.1)
(a) Solve the initial/boundary value problem for the 1-D heat equation

$$
\begin{cases}u_{t}=u_{x x} & \text { on }(0,2) \times(0, \infty) \\
u_{x}(0, t)=0=u_{x}(2, t), & t>0 \\
u(x, 0)=\left\{\begin{array}{ll}
0, & 0<x<1 \\
1, & 1<x<2
\end{array},\right. & 0<x<2\end{cases}
$$

(b) Use mathematical software to plot the graph of your solution.
(c) Use mathematical software to produce a time animation of your solution.

Problem 3 (1-D heat equation, Haberman 2.4.1) Solve the initial/boundary value problem for the 1-D heat equation

$$
\begin{cases}u_{t}=u_{x x} & \text { on }(0, L) \times(0, \infty) \\ u_{x}(0, t)=0=u_{x}(L, t), & t>0 \\ u(x, 0)=\sin (\pi x / L), & 0<x<L\end{cases}
$$

Problem 4 (1-D heat equation, Haberman 2.4.1)
(a) Solve the initial/boundary value problem for the 1-D heat equation

$$
\begin{cases}u_{t}=u_{x x} & \text { on }(0, \pi) \times(0, \infty) \\ u_{x}(0, t)=0=u_{x}(\pi, t), & t>0 \\ u(x, 0)=\sin x, & 0<x<\pi\end{cases}
$$

(b) Use mathematical software to plot the graph of your solution.
(c) Use mathematical software to produce a time animation of your solution.

Problem 5 (1-D heat conduction in a ring, Haberman 2.4.6)
(a) Solve the initial/boundary value problem for the 1-D heat equation

$$
\begin{cases}u_{t}=u_{x x} & \text { on }(0,2 \pi) \times(0, \infty) \tag{1}\\
u(0, t)=u(2 \pi, t), & t>0 \\
u_{x}(0, t)=u_{x}(2 \pi, t), & t>0 \\
u(x, 0)=\left\{\begin{array}{ll}
0, & 0<x<\pi \\
1, & \pi<x<2 \pi
\end{array},\right. & 0<x<2 \pi\end{cases}
$$

(b) Use mathematical software to plot the graph of your solution.
(c) Use mathematical software to produce a time animation of your solution.
(d) Write down and solve the equilibrium problem associated with (1).
(e) Let $u=u(x, t)$ be the solution of (1) you found in part (a). Find

$$
\lim _{t \rightarrow \infty} u(x, t) .
$$

Problem 6 (Laplace's equation in a rectangle, Haberman 2.5.1) Solve the boundary value problem for Laplace's equation

$$
\begin{cases}u_{x x}+u_{y y}=0 & \text { on }(0, L) \times(0, M) \\ u_{x}(0, y)=0=u_{x}(L, y), & t>0 \\ u(x, 0)=0, & 0<x<L \\ u(x, M)=g(x), & 0<x<L\end{cases}
$$

Problem 7 (Laplace's equation in a rectangle, Haberman 2.5.2) Under what conditions does the following boundary value problem for Laplace's equation fail to have a solution?

$$
\begin{cases}u_{x x}+u_{y y}=0 & \text { on }(0, L) \times(0, M) \\ u_{x}(0, y)=0=u_{x}(L, y), & t>0 \\ u_{y}(x, 0)=0, & 0<x<L \\ u_{y}(x, M)=g(x), & 0<x<L\end{cases}
$$

Hint: Integrate the equation (PDE) over the rectangle and then use the divergence theorem.

Problem 8 (Laplace's equation in a disk, Haberman 2.5.5) Solve Laplace's equation in a quarter disk

$$
\mathcal{U}=\{(r \cos \theta, r \sin \theta): 0<r<a, 0<\theta<\pi / 2\}
$$

for a temperature $v=v(r, \theta)$ (in polar coordinates) subject to the boundary conditions

$$
\begin{cases}v_{\theta}(r, 0)=0, & 0<r<a \\ v(r, \pi / 2)=0, & 0<r<a \\ v(a, \theta)=g(\theta), & 0<\theta<\pi / 2\end{cases}
$$

Problem 9 (Poisson integral formula, Haberman 2.5.4)
(a) Use the Fourier series/separated variables solution of

$$
\begin{cases}\Delta v=0, & \text { on }\{(r \cos \theta, r \sin \theta): 0 \leq r<a, \theta \in \mathbb{R}\} \\ v(a, \theta)=g(\theta), & \theta \in \mathbb{R}\end{cases}
$$

to show

$$
\begin{equation*}
v(r, \theta)=\frac{1}{\pi} \int_{0}^{2 \pi} g(t)\left[-\frac{1}{2}+\sum_{j=0}^{\infty}\left(\frac{r}{a}\right)^{j} \cos [j(\theta-t)]\right] d t . \tag{2}
\end{equation*}
$$

(b) Substitute

$$
\cos [j(\theta-t)]=\operatorname{Re}[\cos [j(\theta-t)]+i \sin [j(\theta-t)]]=\operatorname{Re}\left[e^{i j(\theta-t)}\right]
$$

into (2), where $i=\sqrt{-1}$, Re denotes the real part of a complex number, and we $\cos z+i \sin z=e^{i z}$ is Euler's formula, to obtain the Poisson integral formula:

$$
v(r, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \frac{a^{2}-r^{2}}{a^{2}+r^{2}-2 a r \cos (\theta-t)} d t
$$

Hint(s): Taking the real part Re can be treated as linear with respect to sums, series, and integrals; take Re outside the integral. Find a geometric series, and remember you know how to find the sum of such a series. Then use Euler's formula again and the fact that $(a+b i)(a-b i)=a^{2}+b^{2}$ to write your integrand as $f(t)(A+B i)$. Then take the real part back inside the integral.

Problem 10 (Uniqueness of solutions for the Dirichlet problem for Poisson's equation, Haberman 2.5.10) Prove any solution u of the problem

$$
\left\{\begin{array}{l}
-\Delta u=f, \text { on } \mathcal{U} \\
\left.u\right|_{\partial u}=g
\end{array}\right.
$$

where $f: \mathcal{U} \rightarrow \mathbb{R}$ and $g: \partial u \rightarrow \mathbb{R}$ are given functions, is unique. Hint: Use the maximum priniple.

Problem 11 (Calculus of Variations, bonus)
(a) Derive the formula for the area of the surface of rotation determined by rotating the graph of a real valued function $u:[a, b] \rightarrow \mathbb{R}$ about the domain axis.
(b) Call the area calculated in part (a) the Bliss functional $A: \mathcal{A} \rightarrow \mathbb{R}$ where

$$
\mathcal{A}=\left\{u \in C^{1}[a, b]: u(a)=d, u(b)=d\right\} .
$$

Calculate the first variation of A and determine the first order necessary condition for minimizers.
(c) What can you say about the minimizers for this problem?

