
Assignment 4 = Exam 1: Integration

and The Heat Equation

Due Tuesday October 10, 2023

John McCuan

Problem 1 (divergence) Let U be an open subset of R2 and assume v : U → R
2 is

a vector field. Assume also that the coordinate functions v1 and v2 of v = (v1, v2)
have continuous first partial derivatives on U . Take p = (p1, p2) ∈ U and consider for
ǫ, δ > 0 a rectangular domain

R = (p1 − ǫ, p1 + ǫ)× (p2 − δ, p2 + δ) = {x ∈ R
2 : |x1 − p1| < ǫ and |x2 − p2| < δ}.

Finally, assume the closure

R = [p1 − ǫ, p1 + ǫ]× [p2 − δ, p2 + δ] = {x ∈ R
2 : |x1 − p1| ≤ ǫ and |x2 − p2| ≤ δ}

satisfies R ⊂ U .

(a) Express the boundary integral

∫

∂R

v · n =
4
∑

j=1

Ij

where n is the outward unit normal field on ∂R as the sum of four elementary
integrals of the form

I =

∫ b

a

f(t) dt

each corresponding to a single side of ∂R. Be careful to express the integrals
Ij for j = 1, 2, 3, 4 precisely and in full detail so that the dependence of the
arguments of v1 and v2 on the variable t and the lengths ǫ and δ is clearly
indicated.
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(b) Combine the integrals from part (b) above in pairs corresponding to opposite
sides, and apply the mean value theorem to the resulting integrands. Hint: If
the segment

{(a, y) : y1 ≤ y ≤ y2}

is a subset of U , then by the mean value theorem one can write

v1(a, y2)− v1(a, y1) = (y2 − y1)
∂v1

∂y
(a, y∗)

for some y∗ with y1 < y∗ < y2.

(c) Use your expressions for part (b) to compute the following limits

(i)

lim
ǫ→0

∫

∂R

v · n.

(ii)

lim
δ→0

∫

∂R

v · n.

(iii)

lim
ǫ→0

1

length(∂R)

∫

∂R

v · n.

(iv)

lim
δ→0

1

length(∂R)

∫

∂R

v · n.

(d) The mean value theorem for integrals states that if f is continuous on the closed
interval [a, b], then there is some x∗∗ ∈ (a, b) for which

1

b− a

∫ b

a

f(x) dx = f(x∗∗).

Use this result along with your expression from part (b) above to write

1

area(R)

∫

∂R

v · n

as a sum of two terms in which no integrals appear.
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(e) Compute the limits

(i)

lim
ǫ→0

1

area(R)

∫

∂R

v · n.

(ii)

lim
δ→0

1

area(R)

∫

∂R

v · n.

(iii)

div v(p) = lim
ǫ,δ→0

1

area(R)

∫

∂R

v · n.
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Problem 2 (2-D heat equation) Let U model a lamina on which the distribution of
thermal energy evolves by conduction. Complete the following steps to derive the
heat equation for the temperature u : U × [0, T ) → R:

(a) State the divergence theorem by filling in the blanks. If v : U → R
2 is a

vector field having component functions v = (v1, v2) with continuous first partial
derivatives and R is an open subset of R2 with closure

R = R ∪ ∂R ⊂

and well-defined continuous outward unit normal field

n : ∂R → ,

then
∫

∂R

v · n = .

(b) Letting θ : U × [0, T ) → R model the thermal energy density in the lamina,
the physical dimensions of θ are given by

[θ] = ,

and the total thermal energy within the (sub)lamina corresponding to R is
modeled by the integral expression

.

(c) Letting ~φ : U × [0, T ) → R
2 model the thermal flux within U , the physical

dimenions of ~φ are given by

[~φ] = ,

and the integral expression

∫

∂R

~φ · n models the rate exits .
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(d) Assuming no independent thermal energy generation or depletion within the
lamina, conservation of thermal energy is modeled by the integral equation

which by differentiating under the integral sign and using the divergence theo-
rem may be written

(1)

as the vanishing of a single integral expression.

(e) Assuming
∂θ

∂t

is continuous and ~φ has component functions with continuous first spatial partial
derivatives, we can use the

fundamental lemma of

to conclude
∂θ

∂t
+ div(~φ) = 0 on U × (0, T ). (2)

Equation (2) is a order partial differential equation for real valued
functions.

(f) The law of specific heat asserts θ = cρu where u : U × [0, T ) → R models the
temperature and ρ is a mass density so that

[ρ] = and [c] = .

(g) Fourier’s law of heat conduction asserts

~φ = K

where K is called the conductivity and has physical units

[K] = .
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(h) In view of Fourier’s law and the law of specific heat, the integral equation (1)
may be written in terms of the gradient

Du =

(

,

)

as
,

and equation (2) may be written as the order partial differential equation

for .
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Problems 3 and 4 below are about the initial/boundary value problem







ut = ∆u, (x, y, t) ∈ R× (0,∞)
u(x, y, 0) = u0, (x, y) ∈ R

u(x, y, t) = 0, (x, y, t) ∈ ∂R × (0,∞)

for the 2-D heat equation where R = (0, 4)× (0, 2) is a rectangular spatial domain in
R

2.

Problem 3 (separated variables solutions)

(a) For this problem ignore the initial condition and find all solutions of the form

u(x, y, t) = a(x, y)b(t).

Hint: Set a(x, y) = A(x)B(y) and find ODEs/Sturm-Liouville problems with
appropriate boundary values for the functions A and B of one variable.

(b) One of your solutions u should have

a(x, y) = sin
(πx

4

)

sin
(πy

2

)

.

Use mathematical software to plot (the graph of) u(x, y, 0) for this solution.

(c) Use mathematical software to animate the time evolution of the graph

Gt = {(x, y, u(x, y, t)) : (x, y) ∈ R}

where u is your solution from part (b).
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Problem 4 (superposition) Consider the initial temperature

u0(x, y) = 2−max{|x− 2|, 2|y − 1|}

on R = (0, 4)× (0, 2).

(a) Plot (the graph of) u0:

(i) using mathematical software.

(ii) by hand.

(b) Let

akℓ(x, y) = sin

(

kπx

4

)

sin

(

ℓπy

2

)

.

Compute the integrals

(i)

nkℓ =

∫

R

[akℓ]
2.

(ii)

νkℓ =

∫

R

akℓu0.

(c) Find a coefficient c = ckℓ for which

cnkℓ = νkℓ.
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(d) Let
vkℓ(x, y, t) = akℓ(x, y)bkℓ(t)

be a separated variables solution you found in Problem 3 above. Use mathe-
matical software to plot the following:

(i)
∑

k,ℓ≤3

ckℓvkℓ(x, y, 0).

(ii)
∑

k,ℓ≤5

ckℓvkℓ(x, y, 0).

(iii)
∑

k,ℓ≤7

ckℓvkℓ(x, y, 0).

(iv)
∑

k,ℓ≤9

ckℓvkℓ(x, y, 0).

(d) Use mathematical software to animate the evolution of the following graphs:

(i)

Gt =

{(

x, y,
∑

k,ℓ≤3

ckℓvkℓ(x, y, t)

)

: (x, y) ∈ R

}

.

(ii)

Gt =

{(

x, y,
∑

k,ℓ≤5

ckℓvkℓ(x, y, t)

)

: (x, y) ∈ R

}

.

(iii)

Gt =

{(

x, y,
∑

k,ℓ≤7

ckℓvkℓ(x, y, t)

)

: (x, y) ∈ R

}

.

(iv)

Gt =

{(

x, y,
∑

k,ℓ≤9

ckℓvkℓ(x, y, t)

)

: (x, y) ∈ R

}

.

9


