
Assignment 4 = Exam 1: Integration
and The Heat Equation

Solution for Problem 4 (under construction)

John McCuan

Problem 1 (divergence) Let U be an open subset of R2 and assume v : U → R
2 is

a vector field. Assume also that the coordinate functions v1 and v2 of v = (v1, v2)
have continuous first partial derivatives on U . Take p = (p1, p2) ∈ U and consider for
ǫ, δ > 0 a rectangular domain

R = (p1 − ǫ, p1 + ǫ)× (p2 − δ, p2 + δ) = {x ∈ R
2 : |x1 − p1| < ǫ and |x2 − p2| < δ}.

Finally, assume the closure

R = [p1 − ǫ, p1 + ǫ]× [p2 − δ, p2 + δ] = {x ∈ R
2 : |x1 − p1| ≤ ǫ and |x2 − p2| ≤ δ}

satisfies R ⊂ U .

(a) Express the boundary integral

∫

∂R

v · n =
4
∑

j=1

Ij

where n is the outward unit normal field on ∂R as the sum of four elementary
integrals of the form

I =

∫ b

a

f(t) dt

each corresponding to a single side of ∂R. Be careful to express the integrals
Ij for j = 1, 2, 3, 4 precisely and in full detail so that the dependence of the
arguments of v1 and v2 on the variable t and the lengths ǫ and δ is clearly
indicated.
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(b) Combine the integrals from part (b) above in pairs corresponding to opposite
sides, and apply the mean value theorem to the resulting integrands. Hint: If
the segment

{(a, y) : y1 ≤ y ≤ y2}

is a subset of U , then by the mean value theorem one can write

v1(a, y2)− v1(a, y1) = (y2 − y1)
∂v1
∂y

(a, y∗)

for some y∗ with y1 < y∗ < y2.

(c) Use your expressions for part (b) to compute the following limits

(i)

lim
ǫ→0

∫

∂R

v · n.

(ii)

lim
δ→0

∫

∂R

v · n.

(iii)

lim
ǫ→0

1

length(∂R)

∫

∂R

v · n.

(iv)

lim
δ→0

1

length(∂R)

∫

∂R

v · n.

(d) The mean value theorem for integrals states that if f is continuous on the closed
interval [a, b], then there is some x∗∗ ∈ (a, b) for which

1

b− a

∫ b

a

f(x) dx = f(x∗∗).

Use this result along with your expression from part (b) above to write

1

area(R)

∫

∂R

v · n

as a sum of two terms in which no integrals appear.
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(e) Compute the limits

(i)

lim
ǫ→0

1

area(R)

∫

∂R

v · n.

(ii)

lim
δ→0

1

area(R)

∫

∂R

v · n.

(iii)

div v(p) = lim
ǫ,δ→0

1

area(R)

∫

∂R

v · n.
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Problem 2 (2-D heat equation) Let U model a lamina on which the distribution of
thermal energy evolves by conduction. Complete the following steps to derive the
heat equation for the temperature u : U × [0, T ) → R:

(a) State the divergence theorem by filling in the blanks. If v : U → R
2 is a

vector field having component functions v = (v1, v2) with continuous first partial
derivatives and R is an open subset of R2 with closure

R = R ∪ ∂R ⊂

and well-defined continuous outward unit normal field

n : ∂R → ,

then
∫

∂R

v · n = .

(b) Letting θ : U × [0, T ) → R model the thermal energy density in the lamina,
the physical dimensions of θ are given by

[θ] = ,

and the total thermal energy within the (sub)lamina corresponding to R is
modeled by the integral expression

.

(c) Letting ~φ : U × [0, T ) → R
2 model the thermal flux within U , the physical

dimenions of ~φ are given by

[~φ] = ,

and the integral expression

∫

∂R

~φ · n models the rate exits .
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(d) Assuming no independent thermal energy generation or depletion within the
lamina, conservation of thermal energy is modeled by the integral equation

which by differentiating under the integral sign and using the divergence theo-
rem may be written

(1)

as the vanishing of a single integral expression.

(e) Assuming
∂θ

∂t

is continuous and ~φ has component functions with continuous first spatial partial
derivatives, we can use the

fundamental lemma of

to conclude
∂θ

∂t
+ div(~φ) = 0 on U × (0, T ). (2)

Equation (2) is a order partial differential equation for real valued
functions.

(f) The law of specific heat asserts θ = cρu where u : U × [0, T ) → R models the
temperature and ρ is a mass density so that

[ρ] = and [c] = .

(g) Fourier’s law of heat conduction asserts

~φ = K

where K is called the conductivity and has physical units

[K] = .
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(h) In view of Fourier’s law and the law of specific heat, the integral equation (1)
may be written in terms of the gradient

Du =

(

,

)

as
,

and equation (2) may be written as the order partial differential equation

for .
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Problems 3 and 4 below are about the initial/boundary value problem







ut = ∆u, (x, y, t) ∈ R× (0,∞)
u(x, y, 0) = u0, (x, y) ∈ R
u(x, y, t) = 0, (x, y, t) ∈ ∂R × (0,∞)

for the 2-D heat equation where R = (0, 4)× (0, 2) is a rectangular spatial domain in
R

2.

Problem 3 (separated variables solutions)

(a) For this problem ignore the initial condition and find all solutions of the form

u(x, y, t) = a(x, y)b(t).

Hint: Set a(x, y) = A(x)B(y) and find ODEs/Sturm-Liouville problems with
appropriate boundary values for the functions A and B of one variable.

(b) One of your solutions u should have

a(x, y) = sin
(πx

4

)

sin
(πy

2

)

.

Use mathematical software to plot (the graph of) u(x, y, 0) for this solution.

(c) Use mathematical software to animate the time evolution of the graph

Gt = {(x, y, u(x, y, t)) : (x, y) ∈ R}

where u is your solution from part (b).
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Problem 4 (superposition) Consider the initial temperature

u0(x, y) = 2−max{|x− 2|, 2|y − 1|}

on R = (0, 4)× (0, 2).

(a) Plot (the graph of) u0:

(i) using mathematical software.

(ii) by hand.

(b) Let

akℓ(x, y) = sin

(

kπx

4

)

sin

(

ℓπy

2

)

.

Compute the integrals

(i)

nkℓ =

∫

R

[akℓ]
2.

(ii)

νkℓ =

∫

R

akℓu0.

(c) Find a coefficient c = ckℓ for which

cnkℓ = νkℓ.
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(d) Let
vkℓ(x, y, t) = akℓ(x, y)bkℓ(t)

be a separated variables solution you found in Problem 3 above. Use mathe-
matical software to plot the following:

(i)
∑

k,ℓ≤3

ckℓvkℓ(x, y, 0).

(ii)
∑

k,ℓ≤5

ckℓvkℓ(x, y, 0).

(iii)
∑

k,ℓ≤7

ckℓvkℓ(x, y, 0).

(iv)
∑

k,ℓ≤9

ckℓvkℓ(x, y, 0).

(d) Use mathematical software to animate the evolution of the following graphs:

(i)

Gt =

{(

x, y,
∑

k,ℓ≤3

ckℓvkℓ(x, y, t)

)

: (x, y) ∈ R

}

.

(ii)

Gt =

{(

x, y,
∑

k,ℓ≤5

ckℓvkℓ(x, y, t)

)

: (x, y) ∈ R

}

.

(iii)

Gt =

{(

x, y,
∑

k,ℓ≤7

ckℓvkℓ(x, y, t)

)

: (x, y) ∈ R

}

.

(iv)

Gt =

{(

x, y,
∑

k,ℓ≤9

ckℓvkℓ(x, y, t)

)

: (x, y) ∈ R

}

.

9



Problem 4 solution: Notice the initial temperature is given by

u0(x, y) = 2−max{|x− 2|, 2|y − 1|}

= min{2− |x− 2|, 2(1− |y − 1|)}.

(a) Plotting (the graph of) u0:

(i) This is relatively easy using Mathematica. The code

uzero[x , y ] = Min[2 - Abs[x - 2], 2 (1 - Abs[y - 1])]

Plot3D[uzero[x, y], {x, 0, 4}, {y, 0, 2},
ViewPoint -> 2 {1.3, 0.4, 0.5}, BoxRatios -> {4, 2, 2},
PlotStyle -> {GrayLevel[0.8], Opacity[0.2]}]

produces the output in Figure 1.

Figure 1: The way mathematical software plots the graph of u0.

(ii) This is more involved to do by hand, but one can understand the function
better by doing it. First consider a fixed value of x with 0 < x < 2. The
corresponding function of y given by u0(x, y) is given by

u0(x, y) = min{x, 2(1− |y − 1|)}.

Plots of the constant function value x for a value x = 0.8 and the function
values 2(1−|y−1|) are shown on the left in Figure 2. One can see that as y
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Figure 2: The way a human might plot the graph of u0. Cross-section of the graph
of u0 corresponding to x fixed with 0 < x < 2 (left). In this case, x = 0.8.

increases, the minimum is obtained by the latter values and transitions to
the constant value x at y1 = x/2. The minimum value transitions back to
2(1− |y− 1|) when y2 = 2− x/2 as indicated in the figure. The remaining
drawings indicate how this cross-section fits into the graph for 0 < x < 0.8
and (on the right) for 0 < x < 2. Here one can see the “back” part of the
pyramid indicated in Figure 1.

Similar considerations apply for x fixed with 2 < x < 4 except the constant
value is then given by 2 − |x − 2| = 4 − x and the transitions occur at
y1 = 2 − x/2 < x/2 and at y2 = x/2. The result gives the “front” of
the pyramid as indicated in Figure 3 where we obtain a sketch essentially
equivalent to the one shown in Figure 1.

(b) Setting

akℓ(x, y) = sin

(

kπx

4

)

sin

(

ℓπy

2

)

,

we have
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Figure 3: The way a human might plot the graph of u0.

(i)

nkℓ =

∫

R

[akℓ]
2

=

∫

4

0

(
∫

2

0

sin2

(

kπx

4

)

sin2

(

ℓπy

2

)

dy

)

dx

=

∫

4

0

∫

2

0

sin2

(

kπx

4

)(
∫

2

0

sin2

(

ℓπy

2

)

dy

)

dx

=

(
∫

2

0

sin2

(

ℓπy

2

)

dy

)(
∫

4

0

∫

2

0

sin2

(

kπx

4

)

dx

)

=
1

2

(
∫

2

0

1 dy

)

1

2

(
∫

4

0

1 dx

)

= 2,

and
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(ii)

νkℓ =

∫

R

akℓu0

=

∫

4

0

(
∫

2

0

sin

(

kπx

4

)

sin

(

ℓπy

2

)

u0(x, y) dy

)

dx

=

∫

2

0

(
∫

2

0

sin

(

kπx

4

)

sin

(

ℓπy

2

)

u0(x, y) dy

)

dx

+

∫

4

2

(
∫

2

0

sin

(

kπx

4

)

sin

(

ℓπy

2

)

u0(x, y) dy

)

dx

= I1 + I2. (3)

Here, we have broken the integration into two pieces, namely integration
over the “back” region

I1 =

∫

2

0

(
∫

2

0

sin

(

kπx

4

)

sin

(

ℓπy

2

)

u0(x, y) dy

)

dx

and integration over the “front” region

I2 =

∫

4

2

(
∫

2

0

sin

(

kπx

4

)

sin

(

ℓπy

2

)

u0(x, y) dy

)

dx.

Roughly speaking, in view of the “symmetry” involved in the problem,
one should expect the overall integration over the region R to eventually
reduce to some kind of integration over only one quarter of the region R, so
we will work toward expressing the entire integral in terms of an integral
over Q = (0, 2) × (0, 1). A first step might be1 change variables using
ξ = 4− x in I2. I will take the point of view, however, that in order to see
the more immediate and full effect of this change of variables, it is better

1It can be an instructive exercise at this point to take this “first step” and obtain

I2 =

∫

2

0

sin

(

kπ −
kπξ

4

)(
∫

2

0

sin

(

ℓπy

2

)

u0(4− ξ, y) dy

)

dξ

= −(−1)k
∫

2

0

sin

(

kπx

4

)(
∫

2

0

sin

(

ℓπy

2

)

u0(4 − x, y) dy

)

dx.
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to introduce the explicit expression for u0 on intervals/regions where this
expression simplifies. Thus, I turn attention to I1 and write

I1 =

∫

2

0

(

∫ x/2

0

sin

(

kπx

4

)

sin

(

ℓπy

2

)

u0(x, y) dy

)

dx

+

∫

2

0

(

∫

2−x/2

x/2

sin

(

kπx

4

)

sin

(

ℓπy

2

)

u0(x, y) dy

)

dx

+

∫

2

0

(
∫

2

2−x/2

sin

(

kπx

4

)

sin

(

ℓπy

2

)

u0(x, y) dy

)

dx

=

∫

2

0

(

∫ x/2

0

sin

(

kπx

4

)

sin

(

ℓπy

2

)

2y dy

)

dx

+

∫

2

0

(

∫

2−x/2

x/2

sin

(

kπx

4

)

sin

(

ℓπy

2

)

x dy

)

dx

+

∫

2

0

(
∫

2

2−x/2

sin

(

kπx

4

)

sin

(

ℓπy

2

)

2(2− y) dy

)

dx.

Notice that we have used the division points y1 = x/2 < 2 − x/2 and
y2 = 2 − x/2 for 0 < y < 2 associated with Figure 2. Specifically, we
obtain

J1 =

∫

2

0

(

∫ x/2

0

sin

(

kπx

4

)

sin

(

ℓπy

2

)

2y dy

)

dx

because u0(x, y) = min{x, 2(1−|y− 1|)} = 2(1−|y− 1|) = 2y for 0 < y <
x/2 < 1,

J2 =

∫

2

0

(

∫

2−x/2

x/2

sin

(

kπx

4

)

sin

(

ℓπy

2

)

x dy

)

dx

where u0(x, y) = min{x, 2(1− |y − 1|)} = x when x/2 < y < 2− x/2, and

J3 =

∫

2

0

(
∫

2

2−x/2

sin

(

kπx

4

)

sin

(

ℓπy

2

)

2(2− y) dy

)

dx

with u0(x, y) = min{x, 2(1 − |y − 1|)} = 2(1 − |y − 1|) = 2(2 − y) for
1 < 2− x/2 < y < 2. We record for future reference the decomposition

I1 = J1 + J2 + J3. (4)
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Note that

J1 = 2

∫

2

0

sin

(

kπx

4

)

(

∫ x/2

0

y sin

(

ℓπy

2

)

dy

)

dx (5)

= 2

∫

2

0

sin

(

kπx

4

)

K1 dx,

J2 =

∫

2

0

x sin

(

kπx

4

)

(

∫

2−x/2

x/2

sin

(

ℓπy

2

)

dy

)

dx (6)

=

∫

2

0

x sin

(

kπx

4

)

K2 dx, and

J3 = 2

∫

2

0

sin

(

kπx

4

)(
∫

2

2−x/2

(2− y) sin

(

ℓπy

2

)

dy

)

dx (7)

= 2

∫

2

0

sin

(

kπx

4

)

K3 dx

where

K1 =

∫ x/2

0

y sin

(

ℓπy

2

)

dy,

K2 =

∫

2−x/2

x/2

sin

(

ℓπy

2

)

dy, and

K3 =

∫

2

2−x/2

(2− y) sin

(

ℓπy

2

)

dy.

Taking each of these integrals in turn, we find

K1 = −
2y

ℓπ
cos

(

ℓπy

2

)

∣

∣

x/2

y=0

+
2

ℓπ

∫ x/2

0

cos

(

ℓπy

2

)

dy

= −
x

ℓπ
cos

(

ℓπx

4

)

+
4

ℓ2π2
sin

(

ℓπy

2

)

∣

∣

x/2

y=0

= −
x

ℓπ
cos

(

ℓπx

4

)

+
4

ℓ2π2
sin

(

ℓπx

4

)

. (8)

For K2 we write

K2 =

∫

1

x/2

sin

(

ℓπy

2

)

dy +

∫

2−x/2

1

sin

(

ℓπy

2

)

dy
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and change variables using η = 2− y in the second integral so that

K2 =

∫

1

x/2

sin

(

ℓπy

2

)

dy +

∫

1

x/2

sin

(

ℓπ −
ℓπη

2

)

dη

=

∫

1

x/2

sin

(

ℓπy

2

)

dy − cos(ℓπ)

∫

1

x/2

sin

(

ℓπη

2

)

dη

= [1− (−1)ℓ]

∫

1

x/2

sin

(

ℓπy

2

)

dy (9)

since sin(ℓπ) = 0 and cos(ℓπ) = (−1)ℓ. Continuing by setting

K1/2 =

∫

1

x/2

sin

(

ℓπy

2

)

dy,

we find

K1/2 = −
2

ℓπ
cos

(

ℓπy

2

)

∣

∣

1

y=x/2

= −
2

ℓπ

[

cos
(

ℓ
π

2

)

− cos

(

ℓπx

4

)]

=
2

ℓπ

[

cos

(

ℓπx

4

)

− cos
(

ℓ
π

2

)

]

. (10)

Since cos(ℓπ/2) = 0 when ℓ is odd and 1 − (−1)ℓ = 0 when ℓ is even, we
conclude

K1/2 =
2

ℓπ
cos

(

ℓπx

4

)

when ℓ = 2j + 1 is odd, (11)

and

K2 = [1− (−1)ℓ]K1/2 =







0, ℓ even
4

ℓπ
cos

(

ℓπx

4

)

, ℓ = 2j + 1 odd.
(12)

The change of variables η = 2− y applied to K3 gives

K3 =

∫ x/2

0

η sin

(

ℓπ −
ℓπη

2

)

dη

= −(−1)ℓ
∫ x/2

0

η sin

(

ℓπη

2

)

dη

= −(−1)ℓK1. (13)
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Substituting the expression for K2 in (9) into J2 we find

J2 = [1− (−1)ℓ]

∫

2

0

x sin

(

kπx

4

) (
∫

1

x/2

sin

(

ℓπy

2

)

dy

)

dx

= [1− (−1)ℓ]

∫

2

0

x sin

(

kπx

4

)

K1/2 dx (14)

so that taking account of the calculation (10-12)

J2 =







0, ℓ even
4

ℓπ

∫

2

0

x sin

(

kπx

4

)

cos

(

ℓπx

4

)

dx, ℓ = 2j + 1 odd.
(15)

Similarly, substituting the expression for K3 from (13) into J3 we have

J3 = −2(−1)ℓ
∫

2

0

sin

(

kπx

4

)

K1 dx = −(−1)ℓJ1

and

J1 + J3 = 2[1− (−1)ℓ]

∫

2

0

sin

(

kπx

4

)

K1 dx (16)

so that

J1 + J3 =







0, ℓ even

4

∫

2

0

sin

(

kπx

4

)

K1 dx, ℓ = 2j + 1 odd.
(17)

In view of the calculation (8) giving an expression for K1 which we apply
when ℓ = 2j + 1 is odd, we see that in that case

J1 + J3 =
16

ℓ2π2

∫

2

0

sin

(

kπx

4

)

sin

(

ℓπx

4

)

dx

−
4

ℓπ

∫

2

0

x sin

(

kπx

4

)

cos

(

ℓπx

4

)

dx. (18)
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We could press forward to use the trigonometric identities

cos

(

(k − ℓ)πx

4

)

= cos

(

kπx

4

)

cos

(

ℓπx

4

)

+ sin

(

kπx

4

)

sin

(

ℓπx

4

)

(19)

cos

(

(k + ℓ)πx

4

)

= cos

(

kπx

4

)

cos

(

ℓπx

4

)

− sin

(

kπx

4

)

sin

(

ℓπx

4

)

(20)

sin

(

(k − ℓ)πx

4

)

= sin

(

kπx

4

)

cos

(

ℓπx

4

)

− cos

(

kπx

4

)

sin

(

ℓπx

4

)

(21)

sin

(

(k + ℓ)πx

4

)

= sin

(

kπx

4

)

cos

(

ℓπx

4

)

+ cos

(

kπx

4

)

sin

(

ℓπx

4

)

(22)

to evaluate the integrals

L1 =

∫

2

0

sin

(

kπx

4

)

sin

(

ℓπx

4

)

dx (23)

and

L2 =

∫

2

0

x sin

(

kπx

4

)

cos

(

ℓπx

4

)

dx (24)

appearing in (15) and (18). We postpone these calculations for the moment and
turn instead to consideration of

I2 =

∫

4

2

(
∫

2

0

sin

(

kπx

4

)

sin

(

ℓπy

2

)

u0(x, y) dy

)

dx

corresponding to integration over the “front” region (2, 4)× (0, 2). We do note
first however, that given the form of K1 in (16) and the form of K1/2 in (14) we
can write

J1 + J2 + J3 = [1− (−1)ℓ]

{

2

∫

2

0

sin

(

kπx

4

)

(

∫ x/2

0

y sin

(

ℓπy

2

)

dy

)

dx

+

∫

2

0

x sin

(

kπx

4

)(
∫

1

x/2

sin

(

ℓπy

2

)

dy

)

dx

}

= [1− (−1)ℓ]

{

2

∫

2

0

sin

(

kπx

4

)

K1 dx

+

∫

2

0

x sin

(

kπx

4

)

K1/2 dx

}

, (25)
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and we have indeed reduced J1 + J2 + J3 to an expression in terms of integrals
over subregions of the quarter domain Q = (0, 2)× (0, 1).

By the change of variables ξ = 4− x,

I2 = −(−1)k
∫

2

0

sin

(

kπξ

4

)(
∫

2

0

sin

(

ℓπy

2

)

u0(4− ξ, y) dy

)

dξ

= −(−1)k
∫

2

0

sin

(

kπξ

4

)

K4 dξ (26)

where

K4 =

∫

2

0

sin

(

ℓπy

2

)

u0(4− ξ, y) dy. (27)

For 2 < x < 4, the division points are different so that

u0(x, y) = min{4− x, 2(1− |y − 1|)} =







2y, 0 < y < 2− x/2
4− x, 2− x/2 < y < x/2
2(2− y), x/2 < y < 2.

Taking account of our change of variables x = 4 − ξ with 0 < ξ < 2 this
transforms to

u0(4− ξ, y) =







2y, 0 < y < ξ/2
ξ, ξ/2 < y < 2− ξ/2
2(2− y), 2− ξ/2 < y < 2.

Therefore,

K4 = 2

∫ ξ/2

0

y sin

(

ℓπy

2

)

dy

+ ξ

∫

2−ξ/2

ξ/2

sin

(

ℓπy

2

)

dy

+ 2

∫

2

2−ξ/2

(2− y) sin

(

ℓπy

2

)

dy.

It follows that by simply changing the name of the variable of integration from
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ξ to x in (26) we see from the expressions (5-7)

I2 = −(−1)k

{

2

∫

2

0

sin

(

kπx

4

)

(

∫ x/2

0

y sin

(

ℓπy

2

)

dy

)

dx

+

∫

2

0

x sin

(

kπx

4

)

(

∫

2−x/2

x/2

sin

(

ℓπy

2

)

dy

)

dx

+2

∫

2

0

sin

(

kπx

4

)(
∫

2

2−x/2

(2− y) sin

(

ℓπy

2

)

dy

)

dx

}

= −(−1)k(J1 + J2 + J3).

Combining this observation with (4), (3), and (25)

νkℓ = [1− (−1)k](J1 + J2 + J3) (28)

= [1− (−1)k][1− (−1)ℓ]

{

2

∫

2

0

sin

(

kπx

4

)

K1 dx

+

∫

2

0

x sin

(

kπx

4

)

K1/2 dx

}

. (29)

Evidently then if k is even or ℓ is even we have νkℓ = 0. We proceed under the
assumption

k = 2i+ 1 and ℓ = 2j + 1 are both odd.

In this case, νkℓ = 2(J1 + J2 + J3) and this quantity is also given by

νkℓ = 4

{

2

∫

2

0

sin

(

kπx

4

)

K1 dx+

∫

2

0

x sin

(

kπx

4

)

K1/2 dx

}

.

Using the expression for J2 from (15) and the expression for J1 + J3 from (18)
we see there is a cancellation and

νkℓ =
32

ℓ2π2

∫

2

0

sin

(

kπx

4

)

sin

(

ℓπx

4

)

dx. (30)

Consequently, we need only calculate one integral,2 namely

L1 =

∫

2

0

sin

(

kπx

4

)

sin

(

ℓπx

4

)

dx,

2That is, one integral from among (23) and (24).
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using the trigonometric identities (19-22) and, in fact, we only need (19) and
(20). We proceed in cases: Remember we are assuming k = 2i+1 and ℓ = 2j+1
are both odd. If k 6= ℓ, then

L1 =

∫

2

0

1

2

[

cos

(

(k − ℓ)πx

4

)

− cos

(

(k + ℓ)πx

4

)]

dx

=
2

(k − ℓ)π
sin

(

(k − ℓ)πx

4

)

∣

∣

2

x=0

−
2

(k + ℓ)π
sin

(

(k + ℓ)πx

4

)

∣

∣

2

x=0

=
2

π

[

1

(k − ℓ)π
sin
(

(k − ℓ)
π

2

)

−
1

(k + ℓ)π
sin
(

(k + ℓ)
π

2

)

]

.

Substituting k − ℓ = 2(i− j) and k + ℓ = 2(i+ j + 1) we find

sin
(

(k − ℓ)
π

2

)

= sin ((i+ j)π) = 0 and

sin
(

(k + ℓ)
π

2

)

= sin ((i+ j + 1)π) = 0.

It follows that νkℓ = 0 when k 6= ℓ. The final case is when k = 2i+ 1 = ℓ, and

L1 =

∫

2

0

sin2

(

kπx

4

)

dx =
1

2

∫

2

0

1 dx = 1.

Thus,

νkℓ =















0, if k is even or ℓ is even or k 6= ℓ

32

k2π2
=

32

(2i+ 1)2π2
, if k = 2i+ 1 = ℓ is odd.

(31)

It is possible to use a mathematical software package like Mathematica make
this entire calculation, but due to the various cases a little care may be required.
With uzero defined as in part (a)(i) above, the command

Integrate[ Sin[k Pi x/4] Sin[ell Pi y/2] uzero[x, y],

{x, 0, 4}, {y, 0, 2}]

(after some time) returns a complicated expression (which no one wants to deal
with directly) but
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Simplify[Integrate[ Sin[k Pi x/4] Sin[ell Pi y/2] uzero[x, y],

{x, 0, 4}, {y, 0, 2}]]

(after some time) returns something like

-
( (

64 Sin
[

kπ
2

] (

k (-1 + Cos[ell π]) Cos
[

kπ
2

]

+

ell Sin[ell π] Sin
[

kπ
2

]))/

(ell (ell - k) k (ell + k) π3)
)

which in more traditional notation looks like

−
64 sin(kπ/2)[k(−1 + cos(ℓπ)) cos(kπ/2) + ℓ sin(ℓπ) sin(kπ/2)]

ℓ(ℓ− k)k(ℓ+ k)π3
. (32)

In any case, one can see here that the factor ℓ− k in the denominator is going
to be a problem when ℓ = k. Essentially, you’re going to get an indeterminate
form in that case, but Mathematica very well may not know what to do with
the expression and give a division by zero error. The way I usually deal with
this, on the one hand, is to make a separate computation for the case k = ℓ
using

Simplify[Integrate[ Sin[k Pi x/4] Sin[k Pi y/2] uzero[x, y],

{x, 0, 4}, {y, 0, 2}]]

which returns

−
32 Sin

[

kπ
2

]2

(-kπ + Sin[kπ])

k3π3
. (33)

On the other hand, looking at (32) one can see the sin(kπ/2) factor is going to
give νkℓ = 0 when k is even. Also, the factors (−1 + cos(ℓπ)) and sin(ℓπ) are
going to make νkℓ = 0 when ℓ is even. This reduces consideration to the case
k = 2i+ 1 and ℓ = 2j + 1 odd. In fact, the factor sin(ℓπ) is always zero, so we
can simplify (32) in the case k 6= ℓ to

−
64k sin(kπ/2)(−1 + cos(ℓπ)) cos(kπ/2)

ℓ(ℓ− k)k(ℓ+ k)π3
= 128k

sin(kπ/2) cos(kπ/2)

ℓ(ℓ− k)k(ℓ+ k)π3
.

This can also be written as

64k
sin(kπ)

ℓ(ℓ− k)k(ℓ+ k)π3
= 0
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or put another way, one of the two factors sin(kπ/2) and cos(kπ/2) will always
be zero. This tells us the only possible situation in which νkℓ is nonzero is when
k = ℓ is odd, and we should return to (33). The factor sin(kπ) appearing in
(33) is always zero as well, so we get the simplification

νkk =
32

k2π2
sin2

(

kπ

2

)

.

which for k odd gives the same answer recorded in (31). It is also possible to
carry out this computation/calculation in a somewhat more automated manner
using “deferred evaluation” to avoid division by zero errors. In mathematica
an expression defined using “:=” is not evaluated until specific values are given.
Specifically, one can make an assignment like

nu[k ,ell ] := Integrate[ Sin[k Pi x/4] Sin[ell Pi y/2] uzero[x, y],

{x, 0, 4}, {y, 0, 2}]

and then only evaluate when specific numerical values of k and ℓ are used. The
call

nu[1,1]

for example then produces the desired answer 32/π2.
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(c) Finding the coefficients c = ckℓ for which

cnkℓ = νkℓ

is now quite easy:

ckℓ =















0, if k is even or ℓ is even or k 6= ℓ

16

k2π2
=

16

(2i+ 1)2π2
, if k = 2i+ 1 = ℓ is odd.

Specifically, we can consider only the coefficients

Ci =
16

(2i+ 1)2π2
for i = 0, 1, 2, . . .

corresponding to the separated variables solution(s)

vk,k(x, y, t) = e−
5(2i+1)2π2

16
t sin

(

(2i+ 1)πx

4

)

sin

(

(2i+ 1)πy

2

)

.

In particular, we should have

u0(x, y) =
∞
∑

i=0

Ci sin

(

(2i+ 1)πx

4

)

sin

(

(2i+ 1)πy

2

)

.

The next part should give the opportunity to verify we have the coefficients
correct.
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(d) (i)
∑

k,ℓ≤3

ckℓvkℓ(x, y, 0) =
1
∑

i=0

Ci sin

(

(2i+ 1)πx

4

)

sin

(

(2i+ 1)πy

2

)

.

Figure 4: First two nonzero terms in the two variable Fourier approximation of u0.

For this plot and the plots below I used code along the following lines:

coeffs = Table[nu[2 i+1, 2 i+1],{i,0,4}]

a[t ,i ] = E(̂-5(2 i+1)2̂ Pi2̂ t/16)

b[x ,y ,i ] = Sin[(2 i+1) Pi x/4] Sin[(2 i+1) Pi y/2]

appox[x , y , k ] := Sum[coeffs[[i + 1]] a[x, y, i], i, 0, k]

first[x ,y ] = approx[x,y,1]

Plot3D[second[x, y], {x, 0, 4}, {y, 0, 2},

PlotStyle -> {GrayLevel[0.8], Opacity[0.2]},

ViewPoint -> 2 {1.3, 0.4, 0.5}, BoxRatios -> {4, 2, 2}]
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(ii)
∑

k,ℓ≤5

ckℓvkℓ(x, y, 0) =
2
∑

i=0

Ci sin

(

(2i+ 1)πx

4

)

sin

(

(2i+ 1)πy

2

)

.

Figure 5: First three nonzero terms in the two variable Fourier approximation of u0.

(iii)
∑

k,ℓ≤7

ckℓvkℓ(x, y, 0) =
3
∑

i=0

Ci sin

(

(2i+ 1)πx

4

)

sin

(

(2i+ 1)πy

2

)

.

Figure 6: First four nonzero terms in the two variable Fourier approximation of u0.
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(iv)
∑

k,ℓ≤9

ckℓvkℓ(x, y, 0) =
4
∑

i=0

Ci sin

(

(2i+ 1)πx

4

)

sin

(

(2i+ 1)πy

2

)

.

Figure 7: First five nonzero terms in the two variable Fourier approximation of u0.

(d) I can’t show the corresponding animations here, but here is the relevant code:

anim[x , y , t , k ] := Sum[coeffs[[i + 1]] a[x, y, i] b[t, i],

{i, 0, k}]

firstanim[x , y , t ] = anim[x, y, t, 1]

Animate[Plot3D[fanim[x, y, t], {x, 0, 4}, {y, 0, 2},

PlotStyle -> {GrayLevel[0.8], Opacity[0.2]},

ViewPoint -> 2 {1.3, 0.4, 0.5},

PlotRange -> {{0, 4}, {0, 2}, {0, 2}},

BoxRatios -> {4, 2, 2}], {t, 0, 1}]

The animations do not display as much resolution as one would like, as is some-
times the case with Mathematica, but the general behavior looks as expected.
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