Assignment 5: Laplace's Equation (mean value property and maximum principle) Due Tuesday November 9, 2021

John McCuan

October 2, 2021

Problem 1 (Laplace's equation in a strip, Haberman 2.5.15) Solve the boundary value problem for Laplace's equation

$$
\begin{cases}\Delta u=0 & \text { on }(0, L) \times(0, \infty) \\ u(0, y)=0=u(L, y), & y>0 \\ u_{x}(x, 0)=g(x), & 0<x<L\end{cases}
$$

Problem 2 (mean value property) Consider

$$
f(r)=\frac{1}{2 \pi r} \int_{\partial B_{r}(\mathbf{p})} u
$$

where $B_{r}(\mathbf{p})=\left\{\mathbf{x} \in \mathbb{R}^{2}:|\mathbf{x}-\mathbf{p}|<r\right\}$ and $u: \mathcal{U} \rightarrow \mathbb{R}$ is a solution of Laplace's equation with $\overline{B_{r}(\mathbf{p})} \subset \mathcal{U} \subset \mathbb{R}^{2}$.
(a) Compute $f^{\prime}(r)$ and show $f^{\prime}(r)=0$. Hint(s): Change variables so that you're integrating on the boundary of a fixed ball of radius 1. Differentiate under the integral sign, and use the divergence theorem.
(b) Use continuity to conclude

$$
u(\mathbf{p})=\frac{1}{2 \pi r} \int_{\partial B_{r}(\mathbf{p})} u
$$

(c) (bonus) Show

$$
u(\mathbf{p})=\frac{1}{\pi r^{2}} \int_{B_{r}(\mathbf{p})} u
$$

Problem 3 (maximum principle, Haberman 2.5.13) Show that if \mathcal{U} is an open, bounded, and connected domain (in \mathbb{R}^{n}) and $u: \mathcal{U} \rightarrow \mathbb{R}$ satisfies $\Delta u=0$, then

$$
u(\mathbf{p})>\min \{u(\mathbf{x}): \mathbf{x} \in \overline{\mathcal{U}}\} \quad \text { for all } \mathbf{p} \in \mathcal{U}
$$

unless u is constant. (Connected means \mathcal{U} cannot be written as the disjoint union of two nonempty open sets.)

Problem 4 (transport of mass, Haberman 2.5.17-18) If mass determined by a density $\rho=\rho(\mathbf{x}, t)$ is modeled by the transport of mass by a velocity \mathbf{v}, and the mass remains constant in space and time, then show

$$
\operatorname{div} \mathbf{v}=0
$$

Problem 5 (Fourier series, Haberman Chapter 3, sections 3.1-3.3)
(a) Find the Fourier sine series of the constant function $f(x)=1$ on the interval of interest $(0, L)$.
(i) Describe the convergence of the series expansion from part (a).
(ii) Take $L=1$, and if Gibb's phenomenon is present, verify it numerically.
(b) Find the Fourier cosine series of the constant function $f(x)=x$ on the interval of interest $(0, L)$.
(i) Describe the convergence of the series expansion from part (b).
(ii) Take $L=1$, and if Gibb's phenomenon is present, verify it numerically.
(c) Find the full Fourier (sine and cosine) series of the constant function $f(x)=x^{2}$ on the interval of interest $(0, L)$.
(i) Describe the convergence of the series expansion from part (c).
(ii) Take $L=2$, and if Gibb's phenomenon is present, verify it numerically.

Problem 6 (Fourier series, Haberman Chapter 3, sections 3.1-3.3) Find the Fourier sine series for the constant function $f(x)=1$ on the interval (of interest) $(0, \pi)$.
(a) Evaluate your series at $m \pi$ for $m \in\{0, \pm 1, \pm 2, \ldots\}$. What is the relation between this evaluated value and the values of the constant function?
(b) Find the maximum value of the partial sum

$$
f(x)=\frac{4}{\pi} \sum_{j=0}^{N} \frac{1}{2 j+1} \sin [(2 j+1) x] .
$$

Hint(s): Differentiate, and try to solve $f^{\prime}(x)=0$. Use induction to prove the trigonometric identity

$$
\sum_{j=0}^{N} \cos [(2 j+1) x]=\frac{\sin [2(N+1) x]}{2 \sin x}
$$

Note that $2(N+1) x=(2 N+3) x-x$. Also,

$$
\frac{1}{2 j+1} \sin [(2 j+1) x]=\int_{0}^{x} \cos [(2 j+1) \xi] d \xi
$$

The answer is

$$
\begin{equation*}
h(N)=\frac{4}{\pi} \int_{0}^{\pi /(2 N+1)} \frac{\sin [2(N+1) \xi]}{2 \sin \xi} d \xi \tag{1}
\end{equation*}
$$

(c) Approximate the limiting value

$$
\delta=\lim _{N \rightarrow \infty} h(N) .
$$

of the expression in (1) as N tends to infinity.
(d) The value $(\delta-1) / 1$ is called the Wilbraham-Gibbs constant. Explain the significance of this ratio as "overshoot."

Problem 7 (Calculus of variations, Troutman 1.1.3) Assume a boat maintains a relative velocity

$$
\mathbf{v}=\left(v_{1}, v_{2}\right) \quad \text { with constant magnitude }|\mathbf{v}|=v
$$

while crossing a river of varying flow rate $\phi \mathbf{e}_{2}=(0, \phi)$ from a point

$$
\begin{equation*}
(x(0), y(0))=(0,0) \tag{2}
\end{equation*}
$$

to a point

$$
\begin{equation*}
(x(T), y(T))=(L, Y) \tag{3}
\end{equation*}
$$

This means the path of the boat is determined by the sum of these velocities according to the ODE

$$
\begin{equation*}
\left(\frac{d x}{d t}, \frac{d y}{d t}\right)=\mathbf{v}+\phi \mathbf{e}_{2} \tag{4}
\end{equation*}
$$

(a) Show that the total time of transit for a path $(x(t), y(t))$ satisfying (2-4) is

$$
T=\int_{0}^{L} \frac{1}{v_{1}} d x
$$

$\operatorname{Hint}(s): v_{1}=d x / d t$. (Assume this quantity is non-vanishing so that the time of travel can be expressed as a function of x.)
(b) If the path is expressed as the graph of a function $y=u(x)$, write down an appropriate admissible class and variational problem to determine the path giving the least time of travel across the river. Hint(s): Show that

$$
u^{\prime}=\frac{\phi}{v_{1}}+\sqrt{\left(\frac{v}{v_{1}}\right)^{2}-1}
$$

and solve this equation for $1 / v_{1}$.
(c) What can you say about the sign of $v^{2}-\phi^{2}$?

The following problems are related to Section 2.5.3 in Haberman and Haberman's exercises 2.5.17-27. You will (presumably) also need to consult my notes on Stokes' Flow around a Cylinder.

Problem 8 (streamlines, Haberman 2.5.17-19)
(a) Show that the transport equation for the motion of mass under a velocity field \mathbf{v} implies

$$
\begin{equation*}
\operatorname{div} \mathbf{v}=0 \tag{5}
\end{equation*}
$$

when the mass density ρ is constant.
(b) Show any velocity field given by $\mathbf{v}=\left(\psi_{y},-\psi_{x}\right)$ where $\psi: \mathcal{U} \rightarrow \mathbb{R}$ with ψ a solution of Laplaces equation on some open set $\mathcal{U} \subset \mathbb{R}^{2}$ satisfies (5).
(c) Assuming the velocity field $\mathbf{v}=\left(\psi_{y},-\psi_{x}\right)$ as in part (b), let $\gamma:(a, b) \rightarrow L_{h}$ be a parameterized curve with image in the level set

$$
L_{h}=\{(x, y) \in \mathcal{U}: \psi(x, y)=h\} .
$$

Show that γ^{\prime} is parallel to \mathbf{v}. Hint(s): Note that $\psi(\gamma(t))=h$, and differentiate.
Problem 9 (stream function, lift and drag, Haberman 2.5.21-24) Consider $\psi: \mathbb{R}^{2} \backslash B_{1}(\mathbf{0}) \rightarrow$ \mathbb{R} by

$$
\psi(x, y)=-\alpha \ln \sqrt{x^{2}+y^{2}}-y\left(1-\frac{1}{x^{2}+y^{2}}\right)
$$

where $B_{1}(0)=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$.
(a) Show ψ satisfies the boundary value problem

$$
\begin{cases}\Delta \psi=0, & x^{2}+y^{2}>1 \\ \psi=0, & x^{2}+y^{2}=1\end{cases}
$$

(b) Set $\mathbf{v}=\left(\psi_{y},-\psi_{x}\right)$ and use Bernoulli's law

$$
P=P_{0}-\rho \frac{|\mathbf{v}|^{2}}{2}
$$

for the pressure P to express the force vector exerted by the pressure on $\partial \mathcal{U}=$ $\partial B_{1}(\mathbf{0})$ where $\mathcal{U}=\mathbb{R}^{2} \backslash \overline{B_{1}(\mathbf{0})}$ as a flux integral over $\partial \mathcal{U}$.
(c) Calculate the horizontal force (drag) and the vertical force (lift) from your integral expression in part (b).

Problem 10 (streamlines, Haberman 2.5.25-26) Again consider

$$
\psi(x, y)=-\alpha \ln \sqrt{x^{2}+y^{2}}-y\left(1-\frac{1}{x^{2}+y^{2}}\right)
$$

and the associated velocity field $\mathbf{v}=\left(\psi_{y},-\psi_{x}\right)$. Assume $\alpha>0$.
(a) Define $\Psi(r, \theta)=\psi(r \cos \theta, r \sin \theta)$. Determine the domain \mathcal{H} of Ψ and plot numerically the level sets

$$
\mathcal{L}_{h}=\{(r, \theta) \in \Sigma: \Psi(r, \theta)=h\} \subset \Sigma
$$

and

$$
L_{h}=\{(x, y) \in \mathcal{U}: \psi(x, y)=h\} \subset \mathcal{U}
$$

for $\alpha=h=1 / 2$.
(b) Show that for every $h \in \mathbb{R}$ and $\alpha>0$, the level set L_{h} contains a curve γ : $(a, b) \rightarrow \mathcal{U}$ with

$$
\begin{equation*}
\lim |\gamma(t)|=\infty \tag{6}
\end{equation*}
$$

In (6) the limit is taken as the parameter tends to some limit T. Setting $\gamma=\left(\gamma_{1}, \gamma_{2}\right)$ determine

$$
\lim _{t \rightarrow T} \gamma_{2}(t)
$$

(c) A stagnation point is a point $(x, y) \in \overline{\mathcal{U}}$ for which $\mathbf{v}(x, y)=0$. For which values of α will there be a stagnation point on $\partial \mathcal{U}$?
(d) Consider

$$
\mathcal{L}_{0}=\{(r, \theta) \in \Sigma: \Psi(r, \theta)=0\} \subset \Sigma
$$

and

$$
L_{0}=\{(x, y) \in \mathcal{U}: \psi(x, y)=h\} \subset \mathcal{U}
$$

Write down (carefully) a formula for each of these curves.

