Assignment 5: Laplace's Equation (mean value property and maximum principle) Due Tuesday November 9, 2021

John McCuan

October 2, 2021

Problem 1 (Laplace's equation in a strip, Haberman 2.5.15) Solve the boundary value problem for Laplace's equation

$$\begin{cases} \Delta u = 0 & on \ (0, L) \times (0, \infty) \\ u(0, y) = 0 = u(L, y), & y > 0 \\ u_x(x, 0) = g(x), & 0 < x < L \end{cases}$$

Problem 2 (mean value property) Consider

$$f(r) = \frac{1}{2\pi r} \int_{\partial B_r(\mathbf{p})} u$$

where $B_r(\mathbf{p}) = \{\mathbf{x} \in \mathbb{R}^2 : |\mathbf{x} - \mathbf{p}| < r\}$ and $u : \mathcal{U} \to \mathbb{R}$ is a solution of Laplace's equation with $\overline{B_r(\mathbf{p})} \subset \mathcal{U} \subset \mathbb{R}^2$.

- (a) Compute f'(r) and show f'(r) = 0. Hint(s): Change variables so that you're integrating on the boundary of a fixed ball of radius 1. Differentiate under the integral sign, and use the divergence theorem.
- (b) Use continuity to conclude

$$u(\mathbf{p}) = \frac{1}{2\pi r} \int_{\partial B_r(\mathbf{p})} u.$$

(c) (bonus) Show

$$u(\mathbf{p}) = \frac{1}{\pi r^2} \int_{B_r(\mathbf{p})} u$$

Problem 3 (maximum principle, Haberman 2.5.13) Show that if \mathcal{U} is an open, bounded, and connected domain (in \mathbb{R}^n) and $u : \mathcal{U} \to \mathbb{R}$ satisfies $\Delta u = 0$, then

$$u(\mathbf{p}) > \min\{u(\mathbf{x}) : \mathbf{x} \in \overline{\mathcal{U}}\}$$
 for all $\mathbf{p} \in \mathcal{U}$

unless u is constant. (Connected means \mathcal{U} cannot be written as the disjoint union of two nonempty open sets.)

Problem 4 (transport of mass, Haberman 2.5.17-18) If mass determined by a density $\rho = \rho(\mathbf{x}, t)$ is modeled by the transport of mass by a velocity \mathbf{v} , and the mass remains constant in space and time, then show

$$\operatorname{div} \mathbf{v} = 0.$$

Problem 5 (Fourier series, Haberman Chapter 3, sections 3.1-3.3)

- (a) Find the Fourier sine series of the constant function f(x) = 1 on the interval of interest (0, L).
 - (i) Describe the convergence of the series expansion from part (a).
 - (ii) Take L = 1, and if Gibb's phenomenon is present, verify it numerically.
- (b) Find the Fourier cosine series of the constant function f(x) = x on the interval of interest (0, L).
 - (i) Describe the convergence of the series expansion from part (b).
 - (ii) Take L = 1, and if Gibb's phenomenon is present, verify it numerically.
- (c) Find the full Fourier (sine and cosine) series of the constant function $f(x) = x^2$ on the interval of interest (0, L).
 - (i) Describe the convergence of the series expansion from part (c).
 - (ii) Take L = 2, and if Gibb's phenomenon is present, verify it numerically.

Problem 6 (Fourier series, Haberman Chapter 3, sections 3.1-3.3) Find the Fourier sine series for the constant function f(x) = 1 on the interval (of interest) $(0, \pi)$.

- (a) Evaluate your series at $m\pi$ for $m \in \{0, \pm 1, \pm 2, \ldots\}$. What is the relation between this evaluated value and the values of the constant function?
- (b) Find the maximum value of the partial sum

$$f(x) = \frac{4}{\pi} \sum_{j=0}^{N} \frac{1}{2j+1} \sin[(2j+1)x].$$

Hint(s): Differentiate, and try to solve f'(x) = 0. Use induction to prove the trigonometric identity

$$\sum_{j=0}^{N} \cos[(2j+1)x] = \frac{\sin[2(N+1)x]}{2\sin x}.$$

Note that 2(N+1)x = (2N+3)x - x. Also,

$$\frac{1}{2j+1}\sin[(2j+1)x] = \int_0^x \cos[(2j+1)\xi] \,d\xi.$$

The answer is

$$h(N) = \frac{4}{\pi} \int_0^{\pi/(2N+1)} \frac{\sin[2(N+1)\xi]}{2\sin\xi} d\xi.$$
 (1)

(c) Approximate the limiting value

$$\delta = \lim_{N \to \infty} h(N).$$

of the expression in (1) as N tends to infinity.

(d) The value $(\delta - 1)/1$ is called the Wilbraham-Gibbs constant. Explain the significance of this ratio as "overshoot."

Problem 7 (Calculus of variations, Troutman 1.1.3) Assume a boat maintains a relative velocity

$$\mathbf{v} = (v_1, v_2)$$
 with constant magnitude $|\mathbf{v}| = v$

while crossing a river of varying flow rate $\phi \mathbf{e}_2 = (0, \phi)$ from a point

$$(x(0), y(0)) = (0, 0) \tag{2}$$

to a point

$$(x(T), y(T)) = (L, Y).$$
 (3)

This means the path of the boat is determined by the sum of these velocities according to the ODE

$$\left(\frac{dx}{dt}, \frac{dy}{dt}\right) = \mathbf{v} + \phi \, \mathbf{e}_2. \tag{4}$$

(a) Show that the total time of transit for a path (x(t), y(t)) satisfying (2-4) is

$$T = \int_0^L \frac{1}{v_1} \, dx.$$

Hint(s): $v_1 = dx/dt$. (Assume this quantity is non-vanishing so that the time of travel can be expressed as a function of x.)

(b) If the path is expressed as the graph of a function y = u(x), write down an appropriate admissible class and variational problem to determine the path giving the least time of travel across the river. Hint(s): Show that

$$u' = \frac{\phi}{v_1} + \sqrt{\left(\frac{v}{v_1}\right)^2 - 1},$$

and solve this equation for $1/v_1$.

(c) What can you say about the sign of $v^2 - \phi^2$?

The following problems are related to Section 2.5.3 in Haberman and Haberman's exercises 2.5.17-27. You will (presumably) also need to consult my notes on Stokes' Flow around a Cylinder.

Problem 8 (streamlines, Haberman 2.5.17-19)

(a) Show that the transport equation for the motion of mass under a velocity field **v** implies

$$\operatorname{div} \mathbf{v} = 0 \tag{5}$$

when the mass density ρ is constant.

- (b) Show any velocity field given by $\mathbf{v} = (\psi_y, -\psi_x)$ where $\psi : \mathcal{U} \to \mathbb{R}$ with ψ a solution of Laplaces equation on some open set $\mathcal{U} \subset \mathbb{R}^2$ satisfies (5).
- (c) Assuming the velocity field $\mathbf{v} = (\psi_y, -\psi_x)$ as in part (b), let $\gamma : (a, b) \to L_h$ be a parameterized curve with image in the level set

$$L_h = \{(x, y) \in \mathcal{U} : \psi(x, y) = h\}.$$

Show that γ' is parallel to v. Hint(s): Note that $\psi(\gamma(t)) = h$, and differentiate.

Problem 9 (stream function, lift and drag, Haberman 2.5.21-24) Consider $\psi : \mathbb{R}^2 \setminus B_1(\mathbf{0}) \to \mathbb{R}$ by

$$\psi(x,y) = -\alpha \ln \sqrt{x^2 + y^2} - y \left(1 - \frac{1}{x^2 + y^2}\right)$$

where $B_1(0) = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}.$

(a) Show ψ satisfies the boundary value problem

$$\begin{cases} \Delta \psi = 0, & x^2 + y^2 > 1\\ \psi = 0, & x^2 + y^2 = 1. \end{cases}$$

(b) Set $\mathbf{v} = (\psi_y, -\psi_x)$ and use Bernoulli's law

$$P = P_0 - \rho \frac{|\mathbf{v}|^2}{2}$$

for the pressure P to express the force vector exerted by the pressure on $\partial \mathcal{U} = \partial B_1(\mathbf{0})$ where $\mathcal{U} = \mathbb{R}^2 \setminus \overline{B_1(\mathbf{0})}$ as a flux integral over $\partial \mathcal{U}$.

(c) Calculate the horizontal force (drag) and the vertical force (lift) from your integral expression in part (b).

Problem 10 (streamlines, Haberman 2.5.25-26) Again consider

$$\psi(x,y) = -\alpha \ln \sqrt{x^2 + y^2} - y \left(1 - \frac{1}{x^2 + y^2}\right)$$

and the associated velocity field $\mathbf{v} = (\psi_y, -\psi_x)$. Assume $\alpha > 0$.

(a) Define $\Psi(r,\theta) = \psi(r\cos\theta, r\sin\theta)$. Determine the domain \mathcal{H} of Ψ and plot numerically the level sets

$$\mathcal{L}_h = \{ (r, \theta) \in \Sigma : \Psi(r, \theta) = h \} \subset \Sigma$$

and

$$L_h = \{(x, y) \in \mathcal{U} : \psi(x, y) = h\} \subset \mathcal{U}$$

for $\alpha = h = 1/2$.

(b) Show that for every $h \in \mathbb{R}$ and $\alpha > 0$, the level set L_h contains a curve $\gamma : (a,b) \to \mathcal{U}$ with

$$\lim |\gamma(t)| = \infty. \tag{6}$$

In (6) the limit is taken as the parameter t tends to some limit T. Setting $\gamma = (\gamma_1, \gamma_2)$ determine

$$\lim_{t \to T} \gamma_2(t).$$

- (c) A stagnation point is a point $(x, y) \in \overline{\mathcal{U}}$ for which $\mathbf{v}(x, y) = 0$. For which values of α will there be a stagnation point on $\partial \mathcal{U}$?
- (d) Consider

$$\mathcal{L}_0 = \{ (r, \theta) \in \Sigma : \Psi(r, \theta) = 0 \} \subset \Sigma$$

and

$$L_0 = \{(x, y) \in \mathcal{U} : \psi(x, y) = h\} \subset \mathcal{U}$$

Write down (carefully) a formula for each of these curves.