
Assignment 6 = Exam 2:

Eigenfunction expansion and the wave equation

Due Tuesday November 23, 2021

John McCuan

December 7, 2021

Problem 1 (eigenfunction expansion, Haberman 3.4.11) Consider the initial/boundary
value problem for the forced 1-D heat equation







ut = uxx + 1 on (0, 2)× (0,∞)
u(0, y) = 0 = u(2, y), y > 0
u(x, 0) = g(x), 0 < x < 2

where

g(x) =

{

−1, 0 < x < 1
1, 1 < x < 2.

(a) Expand the constant forcing function

1 =

∞
∑

j=1

cj sin(jπx/2)

in a Fourier sine series.

(b) Expand the initial temperature g in a Fourier sine series

g(x) =
∞
∑

j=1

gj sin(jπx/2).
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(c) Assume there is a solution of the form

u =

∞
∑

j=1

Bj(t) sin(jπx/2)

and write down the PDE in terms of this expression for u and the expansion of
part (a). Rearrange what you get so that it takes the form

∞
∑

j=1

LjBj sin(jπx/2) = 0. (1)

Make a similar vanishing series corresponding to the initial condition.

(d) Solve a sequence of initial value problems to obtain the functions B1, B2, B3, . . .
(and solve the problem).

(e) Plot your solution with mathematical software and discuss the temperature evo-
lution on the intervals [0, 1] and [1, 2] separately. Be sure to comment on the
values u(1/2, t), u(1, t) and u(3/2, t).
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Problem 2 (eigenfunction expansion, Haberman 3.4.11) Consider

v(x, t) =
(

1− e−π2t/4
)

sin(πx/2)

and
w(x, t) = −e−π2t sin(πx)

on (0, 2)× (0,∞).

(a) Find the initial/boundary value problem (for a forced heat equation) satisfied by
v.

(b) Find the initial/boundary value problem satisfied by w.

(c) Find the initial/boundary value problem satisfied by v + w.

(d) Find a point x ∈ (0, 2) at which the temperature v(x, t)+w(x, t) first decreases and
then increases. Find a point x ∈ (0, 2) at which the temperature v(x, t)+w(x, t)
only increases. Can you increase the forcing to ensure the temperature at all
points only increases? Hint(s): This means to consider av(x, t) + w(x, t) for
a > 1. If you’re stuck you might want to look at part (e) first and then come
back to this part.

(e) Animate v + w. Explain how v + w relates to your discussion in part (e) of
Problem 1.

Problem 3 (wave equation; Haberman 4.4.1) Consider the initial/boundary value
problem























utt = κuxx on (0, 1)× (0,∞)
u(0, t) = 0, t > 0
ux(1, t) = 0, t > 0
u(x, 0) = sin(πx), 0 < x < 1
ut(x, 0) = 0, 0 < x < 1.

for the wave equation.

(a) Let w(x, t) = u(x, t) + x and interpret the boundary conditions on w with respect
to horizontal displacement of an elastic one-dimensional continuum. Do these
conditions make sense?

(b) Find w(1, t).
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Problem 4 (damping, Haberman 4.4.3-5) Analyze the initial/boundary value prob-
lem















ρutt = ǫuxx − βut (x, t) ∈ (0, L)× (0,∞)
u(x, 0) = u0(x), x ∈ (0, L)
ut(x, 0) = v0(x), x ∈ (0, L)
u(0, t) = 0 = u(L, t), t > 0

where ρ, ǫ, and β are positive constants, and u0 and v0 are given functions. Here are
some suggestions for your analysis:

(a) Solve the problem in general using separation of variables and superposition.

(b) Solve the problem in general using eigenfunction expansion.

Note: In parts (a) and (b) there should be multiple qualitative cases (under-
damped, critically damped, and overdamped) depending on the magnitude of the
damping coefficient β.

(c) Choose some specific values of the constants (including L) and initial position
and velocity to see some simple separated variable solutions illustrating each
qualitative case. Animations of the standard (Haberman) “string” model could
be good.

(d) For at least one choice of “more interesting” initial conditions that require a
superposition write down and illustrate the solution.

Problem 5 (sagging equilibrium, Haberman 4.2.1) Consider a deformation w∗ :
[0, L] → [0, L] of a one-dimensional elastic continuum with constant equilibrium den-
sity ρ > 0 and constant elasticity ǫ with w∗(0) = 0, w∗(L) = L, and w′

∗
> 0. Let

y : [0, L] → [−L, 0] by y(x) = −w∗(x) give a vertical representation of the deforma-
tion. Assume w∗ is an equilibrium for the forced wave equation

ρwtt = ǫwxx + ρg

where g > 0 is a gravitational constant.

(a) Find w∗ and determine conditions under which w∗ is admissible. Hint: Non-
admissibility may arise is w∗(x) /∈ [0, L] for some x ∈ (0, L) or if w′

∗
(x) < 0 for

some x. You may wish to consider the relation of these two conditions and the
borderline condition in which w′

∗
(x) = 0 for some x.
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(b) Use mathematical software to illustrate the hanging (and sagging) configuration
given by y (for some specific values of the constants).

(c) Let u∗ : [0, L] → R by u∗(x) = −y(x) − x. Find the boundary value problem
satisfied by u∗ and plot the graph of u∗ (for some specific values of the constants).

I received a request to make my assignments shorter, starting with Assignment 6
(this assignment). I will make this assignment shorter in the following sense:

You have my official permission to consider the five problems above to be the
entirety of Assignment 6 = Exam 2. I think the problems below are very interesting,
and you can learn many potentially useful things if you do them. I will, however,
make an effort to exclude the things you might learn from being required for future
assignments in this course. I don’t make any guarantees concerning the success of
that effort.

Problem 6 (Hamilton’s action principle for the motion of a point mass) Show that
motions x : [0, T ] → R

n satisfying Newton’s second law

M ẍ = f

are stationary points for the action functional A : X → R by

A[x] =

∫ T

0

[

Φ(x, t)−
1

2
M |v|2

]

dt

where X is the admissible class

X = {x ∈ C2([0, T ] → R
n) : x(0) = x0,x(T ) = p}.

Hint: I’m leaving it to you to figure out the relation between the potential Φ and the
force f .
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Problem 7 (equilibrium under tension) Derive a model for the elastic deforma-
tion/motion with respect to time for a function w : [0, L0]× [0, T ) → [0, L0] in

W = {w ∈ C2([0, L0]× [0, T )) : w(0, t) = 0, w(L0, t) = L0, wx(0, t) > 0 for t ≥ 0}

under the following assumptions: The evolving one-dimensional continuum is modeled
on an initial equilibrium interval [0, L] with L < L0 using an initial extension
w0 : [0, L] → [0, L0] by w0(x) = L0x/L and initial tension given by

F = −ǫ(w′

0
− 1).

You may assume constant density ρ and elasticity ǫ. You may use any of the three
approaches presented in my notes on the wave equation (or some other approach if you
like), that is, Newton’s second law according to continuum assumption A, the momen-
tum force relation of continuum assumption B, or Hamilton’s principle of stationary
action.

Problem 8 (slinky/modeling) Note that the equilibrium of Problem 5 above requires
that compression from the equilibrium (w′ < 0) is possible, and this is not possible
for a slinky. Using the result of Problem 7 above, model the equilibrium position
of an elongated slinky suspended vertically and sagging due to constant downward
gravitational acceleration g within an interval [0, L0] of length L < L0. Hint: There
should be three distinct cases depending on whether or not L0 exceeds the length of
the slinky with a free hanging end.

Problem 9 (center of mass) Consider the modeling of the motion of a one-dimensional
elastic continuum by a function w : [0, L]× [0, T ) → R in

W = {w ∈ C2([0, L]× [0, T )) : wx > 0}

where the elasticity ǫ = ǫ(x) is spatially dependent and in the presence of a potential
field Φ : R → R according to which the potential energy associated with the field Φ
for a given configuration w is given by

EΦ = EΦ(t) =

∫ L

0

Φ(w) dx.

(a) Using Hamilton’s principle of stationary action (see my notes on the wave equa-
tion), derive a forced wave equation for the evolution of w. Hint: Your answer
should be (something like)

ρwtt = [ǫ(wx − 1)]x + f

where f(w, x, t) = −Φz(w, x, t).
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(b) Let [a, b] ⊂ (0, L) be an equilibrium subinterval and let

pcm =

∫ b

a

ρw(x, t) dx

∫ b

a

ρ dx

be the center of mass of the deformed interval [w(a, t), w(b, t)]. Show that

Mp̈cm =

(
∫ b

a

ρ dx

)

d2

dt2
pcm

is the sum of the forces at the endpoints of [w(a, t), w(b, t)]. Hint(s): Differen-
tiate under the integral sign and then use the PDE. The forces you should get
are of two kinds: tension forces from the deformation and field forces from the
external forcing.

Problem 10 (Conservation of energy; Haberman 4.4.9-13) Consider the potential
energy

E(t) =
ǫ

2

∫ L

0

(wx − 1)2 dx,

the kinetic energy

K(t) =
1

2

∫ L

0

ρw2

t dx,

and the total energy E(t) = E(t) +K(t) associated with a one-dimensional elastic
motion w : [0, L]× [0, T ) → [0, L] satisfying

{

ρwtt = ǫwxx, on (0, L)× (0, T )
w(0, t) = 0 = w(L, t), t > 0.

(2)

(a) Compute the derivative Ė(t) of the energy with respect to time to obtain the
general formula

Ė(t) = [wx(L, t)− 1]wt(L, t)− [wx(0, t)− 1]wt(0, t).

(b) Conclude that the total energy is conserved for solutions of (2).

(c) What other (natural) boundary conditions result in conservation of energy?
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