
Assignment 6 = Exam 2:

Eigenfunction expansion and the wave equation

Due Tuesday November 23, 2021

John McCuan

December 11, 2021

Problem 1 (eigenfunction expansion, Haberman 3.4.11) Consider the initial/boundary
value problem for the forced 1-D heat equation







ut = uxx + 1 on (0, 2)× (0,∞)
u(0, y) = 0 = u(2, y), y > 0
u(x, 0) = g(x), 0 < x < 2

where

g(x) =

{

−1, 0 < x < 1
1, 1 < x < 2.

(a) Expand the constant forcing function

1 =

∞
∑

j=1

cj sin(jπx/2)

in a Fourier sine series.

(b) Expand the initial temperature g in a Fourier sine series

g(x) =
∞
∑

j=1

gj sin(jπx/2).
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(c) Assume there is a solution of the form

u =

∞
∑

j=1

Bj(t) sin(jπx/2) (1)

and write down the PDE in terms of this expression for u and the expansion of
part (a). Rearrange what you get so that it takes the form

∞
∑

j=1

LjBj sin(jπx/2) = 0. (2)

Make a similar vanishing series corresponding to the initial condition.

(d) Solve a sequence of initial value problems to obtain the functions B1, B2, B3, . . .
(and solve the problem).

(e) Plot your solution with mathematical software and discuss the temperature evo-
lution on the intervals [0, 1] and [1, 2] separately. Be sure to comment on the
values u(1/2, t), u(1, t) and u(3/2, t).

Solution:

(a) I want to expand the constant function f(x) = 1 on the interval (0, 2) using the
eigenfunction basis {sin(jπx/2)}. The coefficients cj should satisfy

2

jπ
(1− cos(jπ)) =

∫ 2

0

sin(jπx/2) dx = cj

∫ 2

0

sin2(jπx/2) dx = cj .

That is,

cj =

{

4/(jπ), j odd
0, j even.

(b) Similarly,

gj = −
∫ 1

0

sin(jπx/2) dx+

∫ 2

1

sin(jπx/2) dx

=
2

jπ
[cos(jπ/2)− 1 + cos(jπ/2)− cos(jπ)]

=
2

jπ
[2 cos(jπ/2)− 1− (−1)j ].

2



The value of cos(jπ/2) takes sequential values with a period of four starting
with j = 1 given by 0,−1, 0, 1, 0,−1, 0, 1, 0, . . .. That is,

[2 cos(jπ/2)− 1− (−1)j ] =







0, j = 2k + 1 odd
−4, j = 2(2k + 1) even
0, j = 4k even.

so

gj =







0, j = 2k + 1 odd or j = 4k even

− 4

jπ
= − 4

(2k + 1)π
, j = 2(2k + 1) even.

Note that in the cases j = 2k + 1 and j = 2(2k+ 1) the index k = 0, 1, 2, 3, . . .,
but in the case j = 4k we use k = 1, 2, 3, . . ..

(c) The PDE for the given series looks like

∞
∑

j=1

B′
j sin(jπx/2) = −

∞
∑

j=1

Bj

(

jπ

2

)2

sin(jπx/2) +
∞
∑

j=1

cj sin(jπx/2)

or
∞
∑

j=1

[

B′
j +

(

jπ

2

)2

Bj − cj

]

sin(jπx/2) = 0.

The initial condition u(x, 0) = g is

∞
∑

j=1

[Bj(0)− gj] sin(jπx/2) = 0.

(d) The coefficients in the series for zero above must vanish. Therefore, we need to
consider the initial value problems

{

B′
j +

(

jπ
2

)2
Bj − cj = 0, t > 0

Bj(0) = gj

for the ODE B′
j + (jπ)2Bj/4 − cj = 0 and j = 1, 2, 3, . . .. This is a first order

linear ODE, so we can use the integrating factor

hj = ej
2π2t/4
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and write
[hBj ]

′ = cjh.

Integrating from t = 0 to t we get

hBj = Bj(0) +
4cj
j2π2

(

ej
2π2t/4 − 1

)

= gj +
4cj
j2π2

(

ej
2π2t/4 − 1

)

or

Bj(t) =

(

gj −
4cj
j2π2

)

e−j2π2t/4 +
4cj
j2π2

. (3)

When j = 2k + 1 is odd, gj = 0 and we have

Bj(t) = B2k+1(t) =
16

(2k + 1)3π3

(

1− e−(2k+1)2π2t/4
)

.

In the cases where j is even we have cj = 0, so (3) simplifies to

Bj(t) = gj e
−j2π2t/4.

When j = 2(2k + 1) is even, we have

Bj(t) = B2(2k+1)(t) = − 4

(2k + 1)π
e−(2k+1)2π2t.

And when j = 4k is even, both gj and cj are zero so Bj(t) = B4k(t) = 0.

We can break up the sum in the eigenfunction expansion (1) accordingly to get
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the solution as a series:

u =

∞
∑

j=1

Bj(t) sin

(

jπx

2

)

=
∞
∑

k=0

B2k+1(t) sin

(

(2k + 1)πx

2

)

+

∞
∑

k=0

B2(2k+1)(t) sin((2k + 1)πx)

+

∞
∑

k=1

B4k(t) sin(2kπx)

=
∞
∑

k=0

16

(2k + 1)3π3

(

1− e−(2k+1)2π2t/4
)

sin

(

(2k + 1)πx

2

)

−
∞
∑

k=0

4

(2k + 1)π
e−(2k+1)2π2t sin((2k + 1)πx).

(e) Notice first of all that at the end (t ր ∞) we expect an equilibrium solution
u′′
∗ = −1 with homogeneous Dirichlet boundary conditions u∗(0) = 0 = u∗(2).

This means a quadratic temperature distrubution

u∗(x) =
1

2
x(2− x)

corresponding to the forcing f = 1 with a constant input of thermal energy
leading to positive temperatures along the rod with max temp of u = 1/2 in
the middle.

The initial conditions are, of course, not consistent with the boundary condi-
tions, so the values u(0, t) and u(2, t) are also, in principle, interesting. For
the series, these values are simply zero, but at time t = 0 the limits of u(x, t)
as x tends to x = 0 from the right and as x tends to x = 2 from the left or
minus and plus one respectively. These singularities resolve instantaneously for
t > 0 due to the infinite propogation speed of the heat operator/equation, but
in some sense we should expect a “faster” resolution at the left endpoint, i.e.,
more rapid increase of nearby values toward zero and a “slower” resolution at
the right endpoint with nearby values decreasing more slowly due to the upward
forcing. We’ll see if we can capture this.
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Let’s see what we get. I found it essentially impossible to see the effect of the
forcing in the resolving of the singularities, though there must be some effect
there. I made a series of plots, and it is pretty clear I have the correct solution.
In the figures below time increases from left to right. Animation is also very
nice for illustrating this solution. One complication is that the number of terms
must be restricted as the time increases because the exponentials get very large
powers as t grows. Of course, when this happens, one is losing very little by
leaving off higher order Fourier terms becuase those terms are very small, so
with the proper adjustments the plots are all pretty good.

Figure 1: Plots with 62 nonzero terms (k = 0, 1, 2, . . . , 30) of the series solution. Initial
data t = 0 (left). Then t = 0.0001; one can see the essentially instantaneous resolution
of the singularities/incompatibility of the initial data here. Finally, t = 0.01 (right).
No indication of the (upward) forcing is apparent at these early times, at least from
casual examination of these figures—and even somewhat more careful examination.
This is a consequence of the fact that the forcing tends to have an effect on a larger
time scale.

To summarize, on the spatial interval [0, 1] the temperature starts at constant
value u ≡ −1 and rises to the positive equilibrium solution u∗(x) = t(1− x/2).
The fastest increase is at the endpoints where the boundary condition u(0, t) = 0
and the jump in initial value u(1+, 0) = 1 play a role. The slowest rise is
toward the middle of the interval with the temperature u(1/2, t) increasing
very slowly (essentially imperceptibly) as a function of t but eventually picking
up speed and always increasing to the equilibrium temperature u∗(1/2) = 3/8.
The temperature value at the endpoint x = 1 of the interval [0, 1] is not well-
defined for t = 0, but essentially instantaneously takes the value u(1, t) ≈ 0 for
0 < t << 1. Then u(1, t) increases very slowly at first and eventually increases
to the equilibrium temperature u∗(1) = 1/2.

The behavior of u(x, t) for x ∈ (1, 2] is quite different. The temperatures at
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Figure 2: Plots with 22 nonzero terms (k = 0, 1, 2, . . . , 10) of the series solution.
Time snapshots at t = 0.015, t = 0.025, and t = 0.04. Still there is no very evident
asymmetry due to the forcing.

Figure 3: More plots with 22 nonzero terms (k = 0, 1, 2, . . . , 10) of the series solution.
Time snapshots at t = 0.05, t = 0.075, and t = 0.1. In these plots it is starting to
become apparent that the middle point at x = 1 is starting to rise (due to the forcing).
Also, in the last plot, it looks like the value u(1/2, 0.1) satisfies 0 < −u(1/2, 0.1) <
u(3/2, 0.1). We return to this time with different horizontal reference lines in the next
snapshot.
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Figure 4: Plots with 22 nonzero terms (k = 0, 1, 2, . . . , 10) of the series solution.
Time snapshots at t = 0.1, t = 0.15. The reference lines (u = ±0.5) for the first plot
at t = −0.1 make it clear that the forcing is causing asymmetry, and the midpoint
clearly has a positive temperature in the middle snapshot (and is still rising while
the temperature at x = 3/2 is still dropping. The snapshot on the right includes 12
terms (k = 0, 1, 2, . . . , 5) of the series at time t = 0.2.

Figure 5: In this series, each with 12 nonzero terms (k = 0, 1, 2, . . . , 5), the asymmetry
becomes very evident. We have here t = 0.25, t = 0.3 and t = 0.35. The midpoint
is still getting hotter and has increasing temperature throughout the evolution as
does the temperature at t = 1/2. The latter is no surprise, but it may be noted that
u(1/2, 0.25) < 0 < u(1/2, 0.3). The temperature at x = 3/2 is probably still dropping
in this series, but in the overall evolution it will eventually change direction and start
to increase (due to the forcing).
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Figure 6: Plots with 10 nonzero terms (k = 0, 1, 2, . . . , 4). These plots for t = 0.6,
t = 0.8 and t = 0.87 represent convergence to the equilibrium solution with all
temperatures increasing across the interval [0, 2].

all these points start at u(x, t) = 1 and decrease. The decrease is rapid near
the endpoints x = 1 and x = 2 and initially very slow in the middle of the
interval. Eventually, all the points have noticeably decreasing temperatures,
though all temperatures along this interval stay positive. The temperature at
each point x ∈ (1, 2) furthermore reaches a positive minimum in time—at which
point in time the temperature begins to increase and the value subsequently
increases to the equilibrium temperature u∗(x) = x(1 − x/2). In particular,
u(3/2, t) decreases to a positive minimum and then increases to the equilibrium
temperature u∗(3/2) = 3/8.

Getting a handle on the particular time tmin at which the minimum temperature
occurs at x = 3/2 (or any other particular point x ∈ (1, 2))—or the value of
that minimum temperature—looks rather difficult. One would have to (or at
least could) differentiate the series with respect to t to get ut(x, tmin) and set
what you get equal to zero. This gives an equation for tmin. Then one could
attempt to evaluate the series solution at that particular time and location.
Presumably, one could obtain a good numerical estimate for both the time tmin

and the minimum temperature. According to the PDE the point tmin = tmin(x)
is also the time at which the condition uxx(x, tmin) = −1 holds in the spatial
temperature profile at position x at time tmin. (The PDE says ut = uxx + 1.) I
don’t see that this gives any particular advantage in terms of computation, but
it does have a somewhat intersting consequence for the limiting temperature
profile as t ց 0, namely, we expect that the limit

lim
xց1

tmin(x) = 0,

and this means the value of the second homogeneous spatial derivative uxx(1, t)
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should limit to−1. Thus, there is a strong spatial asymmetry in the temperature
profile at the level of the second (spatial) derivative all the way down to t =
0. This strong asymmetry is rather difficult to see in the plots. This is not
altogether surprising because the spatial gradient ux(1, t) is blowing up to +∞
as t ց 0.
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Problem 2 (eigenfunction expansion, Haberman 3.4.11) Consider

v(x, t) =
(

1− e−π2t/4
)

sin(πx/2)

and
w(x, t) = −e−π2t sin(πx)

on (0, 2)× (0,∞).

(a) Find the initial/boundary value problem (for a forced heat equation) satisfied by
v.

(b) Find the initial/boundary value problem satisfied by w.

(c) Find the initial/boundary value problem satisfied by v + w.

(d) Find a point x ∈ (0, 2) at which the temperature v(x, t)+w(x, t) first decreases and
then increases. Find a point x ∈ (0, 2) at which the temperature v(x, t)+w(x, t)
only increases. Can you increase the forcing to ensure the temperature at all
points only increases? Hint(s): This means to consider av(x, t) + w(x, t) for
a > 1. If you’re stuck you might want to look at part (e) first and then come
back to this part.

(e) Animate v + w. Explain how v + w relates to your discussion in part (e) of
Problem 1.

Solution:

(a) Differentiating

v(x, t) =
(

1− e−π2t/4
)

sin(πx/2)

we find

vt =
π2

4
e−π2t/4 sin(πx/2) and vxx = −π2

4

(

1− e−π2t/4
)

sin(πx/2).

Therefore,

vt = vxx +
π2

4
sin(πx/2).

This forcing is rather similar to the forcing in Problem 1 in the sense that it
is positive across (at least the interior) of the spatial interval. The boundary
values are the same:

v(0, t) = 0 = v(2, t).
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As for the initial value
v(x, 0) ≡ 0.

So this is rather different, and we expect the temperature v to rise across the
interval to the positive equilibrium temperature v∗ = v∗(x) determined by

v′′∗ = −π2

4
sin(πx/2).

That is,
v∗(x) = sin(πx/2).

In summary, v satisfies







vt = vxx +
π2

4
sin(πx/2) on [0, 2]× [0,∞)

v(0, t) = 0 = v(2, t), t ≥ 0
v(x, 0) ≡ 0, 0 ≤ x ≤ 2.

(b) The same kind of computation applied to

w(x, t) = −e−π2t sin(πx)

gives






wt = wxx on [0, 2]× [0,∞)
w(0, t) = 0 = w(2, t), t ≥ 0
w(x, 0) = − sin(πx), 0 ≤ x ≤ 2.

This one has no forcing (homogeneous PDE) but the initial value is somewhat
similar to the initial value in Problem 1, in the sense that the temperature starts
negative on the spatial interval (0, 1) and positive on the spatial interval (1, 2).
In this case, we expect monotone decay (increasing with time for x ∈ (0, 1) and
decreasing in time for x ∈ (1, 2)) to the equilibrium solution w∗(x) ≡ 0.

(c) Let u = v + w. Then (just adding things up gives)







ut = uxx +
π2

4
sin(πx/2) on [0, 2]× [0,∞)

u(0, t) = 0 = u(2, t), t ≥ 0
u(x, 0) = − sin(πx), 0 ≤ x ≤ 2.

So this initial/boundary problem is rather like a continuous/smooth version of
the one in Problem 1.
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(d) First decreasing and then increasing? I expect this on the second half of the
interval. How about x = 3/2? We have

v(3/2, t) + w(3/2, t) =
(

1− e−π2t/4
)

√
2

2
+ e−π2t

=

√
2

2
+ e−π2t −

√
2

2
e−π2t/4.

Thus,
d

dt
[v(3/2, t) + w(3/2, t)] = −π2 e−π2t +

π2
√
2

8
e−π2t/4.

Setting this quantity equal to zero we conclude there is a uniqe zero t = tmin of
the derivative:

8 =
√
2 eπ

2(1−1/4)t or tmin =
4

3π2
ln(4

√
2).

We can see that this is a minimum in a couple different ways. First of all,
v(3/2, 0) + w(3/2, 0) = 1 and

v(3/2, tmin) + w(3/2, tmin) =

√
2

2
+ e−π2tmin −

√
2

2
4
√
2 e−π2tmin

=

√
2

2
− 3e−π2tmin

=

√
2

2
− 3e−(4/3) ln(4

√
2)

=

√
2

2
− 3

(4
√
2)4/3

.
= 0.409469

< 1.

And it’s clear that

lim
tր+∞

[v(3/2, t) + w(3/2, t)] =

√
2

2
.
= 0.707107 >

√
2

2
− 3e−π2tmin .

With only one unique critical point, it is clear from these observations that
the value at the critical point is a minimum. In fact, only the last limiting
observation is enough.
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A second way to see that a minimum occurs at tmin is, for example, to compute
the second derivative

d2

dt2
[v(3/2, t) + w(3/2, t)] = π4 e−π2t − π4

√
2

32
e−π2t/4.

and evaluate at t = tmin. I’ll leave it to you to convince yourself that you get a
positive value. Mathematica says the value you should get is

d2

dt2
[v(3/2, t) + w(3/2, t)]∣

∣

t=tmin

=
3π4

32 3
√
2
.

If you need a third way to see this, you could just plot v(3/2, t) + w(3/2, t) as
a function of t using mathematical software.

For a point where the temperature only increases, we could try x = 1/2 or
x = 1. For x = 1/2, we get

v(1/2, t) + w(1/2, t) =
(

1− e−π2t/4
)

√
2

2
− e−π2t.

Here
d

dt
[v(1/2, t) + w(1/2, t)] = π2 e−π2t +

π2
√
2

8
e−π2t/4 > 0.

Similarly,

v(1, t) + w(1, t) =
(

1− e−π2t/4
)

,

and this clearly only increases.

As suggested in the hint, if we look at u = αv + w, we get a solution of






ut = uxx +
απ2

4
sin(πx/2) on [0, 2]× [0,∞)

u(0, t) = 0 = u(2, t), t ≥ 0
u(x, 0) = − sin(πx), 0 ≤ x ≤ 2,

and the question is: If α is big enough, then is it true that ut is always positive?
This simply means you’d need to have the (positive) forcing dominate uxx. I
do not see why we couldn’t do this. Notice that uxx(x, 0) for the initial data is
given by

uxx(x, 0) = wxx(x, 0) = π2 sin(πx).
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Figure 7: Comparison of the initial value of uxx = uxx(x, 0) with the forcing α[vt −
vxx] = αf . In this figure we have taken α = 9, but any value greater than α = 8
should work. Notice that the forcing in the PDE ut = uxx+ f depends only on x. As
a consequence we can determine f from the equation f(x) = ut − uxx even though ut

and uxx may vary with time. (The difference ut − uxx is always f(x) independent of
time.) Furthermore, since wt = wxx, we have also f(x) = vt − vxx. We are assuming
the evolution does not lead to values of uxx = uxx(x, t) which are more negative than
those of uxx = uxx(x, 0). This turns out to be the case, as you can see from animation
with α = 9. You can also figure this out directly, without any reasoning about α, just
by doing animations of αv+w for increasing values of α; this was what was intended
by the hint concerning the next part.

This has derivative of magnitude π3 at the endpoints (and no larger anywhere
else), so if we pick α so that the derivative of the forcing term, namely

απ3

8
cos(πx/2)

dominates at the endpoints, that is α > 8, then we expect uxx for positive
time will only get smaller and the forcing will always dominate leading to the
conclusion ut > 0. This behavior is indicated in Figure 8, and I have included
an animation in the accompanying Mathematica notebook.

(e) I’ve got an animation in my Mathematica notebook. I can try to use the same
approach used in Figure 8 for part (d) (with varying lengths of dashes) to
illustrate what happens. See Figure 9.
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Figure 8: Here we have attempted to represent an animation of the temperature
evolution associated with the increased forcing corresponding to u = αv + w with
α = 9. The initial temperature u(x, 0) = − sin(πx) is plotted with a solid line at the
bottom. The passing of time is indicated with dashed plots of successively larger dash
separation, and then the limiting equilibrium temperature u∗ is indicated at the top
with small dashing. As you can see, all temperatures increase during the evolution
in agreement with our reasoning for choosing α > 8 above.
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Figure 9: Here we have attempted to represent an animation of the temperature
evolution associated with the increased forcing corresponding to u = v+w. The initial
temperature u(x, 0) = − sin(πx) is plotted with a solid line. In this situation the
initial temp is not “at the bottom” but overlaps subsequent temperature profiles. The
passing of time is indicated with dashed plots of successively larger dash separation,
and then the limiting equilibrium temperature u∗ is indicated at the top with small
dashing. The initially decreasing temperature on most of the interval (1, 2) is evident
in this figure.
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Figure 10: Separate evolutions of v (left) and w (right).

Notice in Figure 9 that while it appears all positions in the spatial interval (0, 1)
and even (0, 1] experience monotone increasing temparature, it is not the case
that all positions on the interval (1, 2) initially decrease. Nevertheless, all tem-
peratures (at all points) appear to eventually be increasing to the equilibrium.
The fact that some points in (1, 2), especially near the middle, experience only
increasing temperatures is clearly to be expected from our discussion of part (d)
above. To be precise, we know uxx(1, 0) = 0, so the positive forcing will clearly
overwhelm the initial diffusion at nearby points and give ut = uxx + f > 0.

As for comparison to part (e) of Problem 1, we can easily view the evolution
of v + w as the superposition of v and w. That is to say, we have v initially
at temp zero with v(x, 0) = 0 and positive forcing leading to a monotone in-
creasing temperature profile tending to the equilibrium. See Figure 10 (left).
On the other hand (and on the right) we have w which begins with negative
temperature on (0, 1) and positive temperature on (1, 2) and decays via simple
diffusion to zero. We note that the temperature scale is the same in both “ani-
mations” and the time intervals are also harmonized so that the significance of
the time dependence can be discerned. In particular, the finest dashed profile
corresponding to t = 0.03, shows the temperature w(3/2, 0.03) is much farther
from w(3/2, 0) than the temperature v(3/2, 0.03) is from v(3/2, 0). That is, the
effect of diffusion at this point (for the superposition) is greater than that of

18



the forcing (for small times). For larger times the diffusion diminishes and the
forcing is dominant; compare the last two represented times with the largest
dashes:

v(3/2, 1)− v(3/2, 0.3) > w(3/2, 0.3)− w(3/2, 1).

We saw this same kind of time dependence in Problem 1. For small times
the initial diffusion of the square wave was dominant (leading to a decreasing
temperature at x = 3/2 for example) and for later times the forcing became
more significant (and caused a reversal and increasing temperature at x =
3/2 for example). One can, of course, “pull apart” the initial/boundary value
problem in Problem 1 into a forced heat equation for a function v with constant
forcing f ≡ 1 and a free diffusion for a function w with initial square wave
temperature profile. Then the function u of Problem 1 is the superposition of
these two.

Another way to relate Problem 2 and Problem 1 is that Problem 2 is essentially
replacing the constant forcing f ≡ 1 with its first Fourier mode which is a
multiple of sin(πx/2) and replacing the initial value also with its first Fourier
mode which is a multiple of − sin(πx).

There are a couple further aspects of this kind of problem one might explore.

1. We have seen that by increasing the positive forcing we can change the
overall qualitative behavior of the solution and get, for example, strictly
increasing temperatures at all interior points. In view of the comments
concerning the time dependence above, this is an illustration of the simple
assertion that incresing the positive forcing not only results in the temper-
ature reaching a higher ultimate value but increased positive forcing also
results in faster heating. Is there a qualitative change resulting from
decreasing the positive forcing relative to the influence of the initial con-
dition? That is, what happens if you consider αv + w for α > 0 much
smaller than 1?

2. Can you make the discussion of first Fourier modes just above precise and,
furthermore, break Problem 1 up into two separate problems as suggested
above and see the series solutions for those problems in the series solution
for Problem 1?
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Problem 3 (wave equation; Haberman 4.4.1) Consider the initial/boundary value
problem























utt = κuxx on (0, 1)× (0,∞)
u(0, t) = 0, t > 0
ux(1, t) = 0, t > 0
u(x, 0) = sin(πx), 0 < x < 1
ut(x, 0) = 0, 0 < x < 1.

for the wave equation.

(a) Let w(x, t) = u(x, t) + x and interpret the boundary conditions on w with respect
to horizontal displacement of an elastic one-dimensional continuum. Do these
conditions make sense?

(b) Find w(1, t).

Solution:

(a) We have w(0, t) = 0. This means the left endpoint is fixed. That is simple
enough. The condition at the right endpoint is

wx(1, t) = 1.

This is a natural condition for a free end. Recall that the force within the
deformed 1-D continuum is given by something like

F = ǫ(wx − 1)

where ǫ is the elasticity. In this problem we apparently have the relation κ = ǫ/ρ
where ρ is a constant linear density. The point is that the condition wx(1, t)
means that no forces are acting at the end w(L), i.e., this is a free end. I
think it makes good sense.

Note that this condition of a free end coincides with the “completely com-
pressed” condition for a slinky, however, this is not quite the same thing. For
a slinky, when you have wx = 1 there can be no more “compression.” With a
standard oscillator you only need the admissibility condition wx > 0, and the
condition wx = 1 really means no forces.

(b) This is a bit tricky (or unexpected) because the initial condition is not compatible
with the free end condition. Mathematically, this means the initial condition
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u(x, 0) = sin(πx), though a very nice function, is not a compatible Fourier mode
for the problem, and we have to do a Fourier expansion of it in terms of the
natural Fourier basis.

If you do the separation of variables, you find this basis to be

{

sin

(

1 + 2j

2
πx

)}∞

j=0

.

Thus, we write

u(x, t) =

∞
∑

j=0

[aj cos(
√
κ (1+2j)πt/2)+bj sin(

√
κ (1+2j)πt/2)] sin

(

1 + 2j

2
πx

)

.

The zero initial velocity condition ut(x, 0) = 0 tells us bj = 0 for all j. Therefore,
the superposition simplifies to

u(x, t) =

∞
∑

j=0

aj cos(
√
κ (1 + 2j)πt/2) sin

(

1 + 2j

2
πx

)

.

the initial condition is

∞
∑

j=0

aj sin

(

1 + 2j

2
πx

)

= sin(πx).

Assuming the usual orthogonality, we should get something like this:

aj

∫ 1

0

sin2

(

1 + 2j

2
πx

)

dx =

∫ 1

0

sin(πx) sin

(

1 + 2j

2
πx

)

dx. (4)

With any luck the integral on the left should still be aj/2. The integral on the
right looks a little unpleasant, but I think we can use a trig identity. Let’s see...I
know

cos(A +B) = cosA cosB − sinA sinB and

cos(A− B) = cosA cosB + sinA sinB.

I guess this means

2 sinA sinB = cos(A− B)− cos(A+B)
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and

sin(πx) sin

(

1 + 2j

2
πx

)

=
1

2

[

cos

(

2j − 1

2
πx

)

− cos

(

2j + 3

2
πx

)]

.

These I can integrate:

∫ 1

0

cos

(

2j − 1

2
πx

)

dx =
2

(2j − 1)π
sin

(

2j − 1

2
πx

)

∣

∣

1

x=0

=
2

(2j − 1)π
sin

(

2j − 1

2
π

)

=
2(−1)j+1

(2j − 1)π
,

and
∫ 1

0

cos

(

2j + 3

2
πx

)

dx =
2

(2j + 3)π
sin

(

2j + 3

2
πx

)

∣

∣

1

x=0

=
2

(2j + 3)π
sin

(

2j + 3

2
π

)

=
2(−1)j+1

(2j + 3)π
.

Returning, more or less, to (4) I have

aj =
2(−1)j+1

(2j − 1)π
− 2(−1)j+1

(2j + 3)π
=

8(−1)j+1

(2j − 1)(2j + 3)π
.

At this point, I should turn to my Mathematica notebook and see if I’ve got the
coefficients correct. They look correct (though I will admit I had a small error
the first time I did the calculation). Lesson to learn: It’s always good to check
your Fourier coefficients by graphing partial sums with mathematical software.

So I have my solution:

u(x, t) =
∞
∑

j=0

8(−1)j+1

(2j − 1)(2j + 3)π
cos

(

2j + 1

2

√
κ πt

)

sin

(

2j + 1

2
πx

)

.
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Figure 11: Plot of the endpoint position as a function of time (left). This one is
interesting. Plot of the initial deformation (middle). Remembering that the endpoint
is at w = 1 for the initial deformation, this looks like there is a problem, i.e., violation
of the fundamental admissibility condition wx > 0 for deformations. Plot of w(x, 0)
(right). This confirms that the value of w is decreasing, so we definitely have a
problem.

Now I remember that w = u+ x and I’m supposed to find w(1, t). That would
be

w(1, t) = 1 +
∞
∑

j=0

8(−1)j+1

(2j − 1)(2j + 3)π
cos

(

2j + 1

2

√
κ πt

)

sin

(

2j + 1

2
π

)

= 1 +

∞
∑

j=0

8(−1)j+1

(2j − 1)(2j + 3)π
cos

(

2j + 1

2

√
κ πt

)

(−1)j

= 1−
∞
∑

j=0

8

(2j − 1)(2j + 3)π
cos

(

2j + 1

2

√
κ πt

)

.

Is this a reasonable value for the oscillation of the free end? Let’s check by
plotting. See Figure 11. The first thing to note is that the motion of the
endpoint is not smooth—there are corners, but it’s piecewise smooth, and it’s
conceivable that this is a reasonable representation of what the free end will
actually do. We’d like to see it in an animation to make sure. When we go
to do that, we notice there is a problem. The initial deformation is too big.
That is to say, the initial deformation w(x, 0) has points with w(x, 0) > 1 and
yet w(1, 0) = 1. This means we must have wx < 0 somewhere which is a
violation of the fundamental admissibility condition for physical deformations.
In order to fix this, we should make the initial deformation u0(x) = sin(πx)
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Figure 12: Plot of the endpoint position as a function of time (left). The interesting
jerky motion of the endpoint is preserved. Plot of the initial deformation (middle).
This looks better, and it looks like wx > 0 at least initially. Plot of w(x, 0) (right).
This confirms the initial condition is okay.

smaller. At least that is one way to fix the problem and get an admissible
initial deformation. Looking back over our solution above, I’ll try replacing the
initial/boundary value problem for u with























utt = κuxx on (0, 1)× (0,∞)
u(0, t) = 0, t > 0
ux(1, t) = 0, t > 0
u(x, 0) = sin(πx)/8, 0 < x < 1
ut(x, 0) = 0, 0 < x < 1

where I’ve divided the initial value by 8. (Notice this works out nicely with all
the 8’s in the coefficients of the Fourier expansion.) It also works. Figure 12
shows the relevant plots, and the (super cool) animation is in my Mathematica
notebook. For new formulas we have (just removing factors of 8):

u(x, t) =
∞
∑

j=0

(−1)j+1

(2j − 1)(2j + 3)π
cos

(

2j + 1

2

√
κ πt

)

sin

(

2j + 1

2
πx

)

.

w(x, t) = x+

∞
∑

j=0

(−1)j+1

(2j − 1)(2j + 3)π
cos

(

2j + 1

2

√
κ πt

)

sin

(

2j + 1

2
πx

)

.

w(1, t) = 1−
∞
∑

j=0

1

(2j − 1)(2j + 3)π
cos

(

2j + 1

2

√
κ πt

)

.
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Problem 4 (damping, Haberman 4.4.3-5) Analyze the initial/boundary value prob-
lem















ρutt = ǫuxx − βut (x, t) ∈ (0, L)× (0,∞)
u(x, 0) = u0(x), x ∈ (0, L)
ut(x, 0) = v0(x), x ∈ (0, L)
u(0, t) = 0 = u(L, t), t > 0

where ρ, ǫ, and β are positive constants, and u0 and v0 are given functions. Here are
some suggestions for your analysis:

(a) Solve the problem in general using separation of variables and superposition.

(b) Solve the problem in general using eigenfunction expansion.

Note: In parts (a) and (b) there should be multiple qualitative cases (under-
damped, critically damped, and overdamped) depending on the magnitude of the
damping coefficient β.

(c) Choose some specific values of the constants (including L) and initial position
and velocity to see some simple separated variable solutions illustrating each
qualitative case. Animations of the standard (Haberman) “string” model could
be good.

(d) For at least one choice of “more interesting” initial conditions that require a
superposition write down and illustrate the solution.

Solution: We let u = A(x)B(t) so that the PDE becomes

AB′′ = A′′B − βAB′.

Dividing by AB we get a separation

B′′ + βB′

B
=

A′′

A
= −µ2.

In view of the boundary conditions A(0) = 0 = A(L), we get µ = jπ/L,

Aj(x) = sin

(

jπ

L
x

)

and

B′′
j + βB′

j +
j2π2

L2
Bj = 0.

25



This is a standard linear oscillator ODE which we, i.e., you, should know everything
about. In particular, the positive constant β is the unit mass (or normalized) damping
constant and the positive constant j2π2/L2 represents the restoring force (divided by
the mass). The qualitative properties of the solutions are determined by the relative
sizes of these constants in the sense that if

β2 < 4
j2π2

L2
, (5)

then the oscillator modeled by Bj is underdamped and

Bj(t) = e−βt/2 [aj cos(ωt) + bj sin(ωt)] where ω =
1

2

√

4
j2π2

L2
− β2; (6)

if

β2 = 4
j2π2

L2
, i.e., β =

2jπ

L
, (7)

then the oscillator modeled by Bj is critically damped and

Bj(t) = e−βt/2 [aj + bjt] , (8)

and if

β2 > 4
j2π2

L2
, (9)

then the oscillator modeled by Bj is overdamped and

Bj(t) = aje
−r1t + bje

−r2t (10)

where

−rm = −β

2
+ (−1)m

√

β2

4
− j2π2

L2
, m = 1, 2. (11)

You may remember also that the characteristic property of critically damped and
overdamped harmonic oscillators is that there can be at most one pass through the
equilibrium position, no matter what the initial conditions, while the characteristic
property of underdamped oscillators is that all nonzero initial conditions lead to
infinitely many passes through the equilibrim position.

Of course we should realize in this case that Bj does not really model a simple
1-D harmonic oscillator but rather a mode of a spatially extended 1-D continuum.
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This means things are a little more complicated. But the crucial thing to note is that
the eigenvalues (according to Sturm-Liouville theory)

j2π2

L2
, j = 1, 2, 3, . . .

comprise an increasing sequence tending to +∞. The relevant consequence here is
that all high enough modes will be underdamped and fall into the category of
(5-6). With a single continuum damping constant β like we have here, this observation
has an interesting physical consequence (or at least suggests it):

Lower frequency modes are more likely to be damped and are easier to
damp; high frequency modes are less likely to be damped and are succes-
sively more difficult to damp.

Taking these comments into consideration, there are essentially three cases for the
series solution

u(x, t) =
∞
∑

j=1

Aj(x)Bj(t) =
∞
∑

j=1

Bj(t) sin

(

jπ

L
x

)

.

CASE 1 (βL < 2π) This would be the special case considered by Haberman in
his Exercise 4.4.3. Here every mode is underdamped, and it makes sense to say the
continuum is also underdamped; we would expect temporal oscillation and infinitely
many passes through the equilibrium position (at least in some sense). The form of
the solution becomes

u(x, t) = e−βt/2

∞
∑

j=1

[aj cos(ωt) + bj sin(ωt)] sin

(

jπ

L
x

)

.

Notice the damping rate does not depend on the index j of the mode, but the (tem-
poral) frequency of oscillation does. The temporal frequency ω, however, is also
dependent on the damping and will not be the same as the spatial frequency of the
oscillation. Of course, the temporal frequency of the oscillation will also depend in
general on the wave speed σ which we have taken to be σ = 1 in this problem. (Note
that Haberman uses σ = T/ρ in his problem where T is the tension and ρ is the linear
density for modeling transverse oscillations.

Setting t = 0 we can use the initial position as usual:

u(x, 0) =

∞
∑

j=1

aj sin

(

jπ

L
x

)

= u0(x).
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This means

aj =
2

L

∫ L

0

u0(x) sin

(

jπ

L
x

)

dx.

Differentiating with respect to t we have

ut(x, t) = −β

2
e−βt/2

∞
∑

j=1

[aj cos(ωt) + bj sin(ωt)] sin

(

jπ

L
x

)

+ ωe−βt/2

∞
∑

j=1

[bj cos(ωt)− aj sin(ωt)] sin

(

jπ

L
x

)

.

Therefore, the initial velocity condition becomes

ut(x, 0) =

∞
∑

j=1

[

ωbj −
β

2
aj

]

sin

(

jπ

L
x

)

= v0(x).

This means

bj =
1

ω

[

β

2
aj +

2

L

∫ L

0

v0(x) sin

(

jπ

L
x

)

dx

]

=
2

ωL

[

β

2

∫ L

0

u0(x) sin

(

jπ

L
x

)

dx+

∫ L

0

v0(x) sin

(

jπ

L
x

)

dx

]

=
2

ωL

∫ L

0

(

β

2
u0(x) + v0(x)

)

sin

(

jπ

L
x

)

dx.

It is understood in this formula that ω = ωj is given in (6), and at this point we can
consider the problem solved in this case.
CASE 2 (βL > 2π and βL/(2π) is not an integer) The special case with

1 <
βL

2π
< 2

is considered by Haberman in his Exercise 4.4.5.
In this case, there will be at least one overdamped mode corresponding to j = 1

and perhaps finitely many others so that for some integer N ≥ 2

N − 1 <
βL

2π
< N,
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and we can write the solution as

u(x, t) =

N−1
∑

j=1

[aje
−r1t + bje

−r2t] sin

(

jπ

L
x

)

+ e−βt/2
∞
∑

j=N

[aj cos(ωt) + bj sin(ωt)] sin

(

jπ

L
x

)

.

The first N − 1 modes are overdamped and no mode is critically damped. The
determination of the coefficients proceeds as follows:

Setting t = 0 we can use the initial position as usual:

u(x, 0) =

N−1
∑

j=1

[aj + bj ] sin

(

jπ

L
x

)

+

∞
∑

j=N

aj sin

(

jπ

L
x

)

= u0(x).

This means

aj =
2

L

∫ L

0

u0(x) sin

(

jπ

L
x

)

dx

for j = N,N + 1, N + 2, . . . as before, but

aj + bj =
2

L

∫ L

0

u0(x) sin

(

jπ

L
x

)

dx for j = 1, 2, . . . , N − 1.

Differentiating with respect to t we have

ut(x, t) = −
N−1
∑

j=1

[r1aje
−r1t + r2bje

−r2t] sin

(

jπ

L
x

)

− β

2
e−βt/2

∞
∑

j=N

[aj cos(ωt) + bj sin(ωt)] sin

(

jπ

L
x

)

+ ωe−βt/2

∞
∑

j=N

[bj cos(ωt)− aj sin(ωt)] sin

(

jπ

L
x

)

.

Therefore, the initial velocity condition becomes

ut(x, 0) = −
N−1
∑

j=1

[r1aj + r2bj ] sin

(

jπ

L
x

)

+

∞
∑

j=N

[

ωbj −
β

2
aj

]

sin

(

jπ

L
x

)

= v0(x).
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This means

bj =
2

ωL

∫ L

0

(

β

2
u0(x) + v0(x)

)

sin

(

jπ

L
x

)

dx

for j = N,N + 1, N + 2, . . . but

r1aj + r2bj = − 2

ωL

∫ L

0

v0(x) sin

(

jπ

L
x

)

dx for j = 1, 2, . . . , N − 1.

For the overdamped modes, j = 1, 2, . . . , N − 1 we have then


















aj + bj =
2

L

∫ L

0
u0(x) sin

(

jπ
L
x
)

dx

r1aj + r2bj = − 2

L

∫ L

0
v0(x) sin

(

jπ
L
x
)

dx.

Since r2 − r1 6= 0 (in fact, r2 − r1 < 0) we can solve this system to obtain for
j = 1, 2, . . . , N − 1

aj =
2

L(r2 − r1)

[

r2

∫ L

0

u0(x) sin

(

jπ

L
x

)

dx+

∫ L

0

v0(x) sin

(

jπ

L
x

)

dx

]

=
2

L(r2 − r1)

∫ L

0

[r2u0(x) + v0(x)] sin

(

jπ

L
x

)

dx

and

bj =
2

L(r1 − r2)

[
∫ L

0

v0(x) sin

(

jπ

L
x

)

dx+ r1

∫ L

0

u0(x) sin

(

jπ

L
x

)

dx

]

=
2

L(r1 − r2)

∫ L

0

[v0(x) + r1u0(x)] sin

(

jπ

L
x

)

dx.

Thus, the problem is solved in the second case.
CASE 3 The final case is when there is some integer N ≥ 2 for which

βL

2π
= N − 1.

The mode j = N − 1 is critically damped. If N = 2, then there is no overdamped
mode and

u(x, t) = e−βt/2[a1 + b1t] sin
(π

L
x
)

+ e−βt/2

∞
∑

j=2

[aj cos(ωt) + bj sin(ωt)] sin

(

jπ

L
x

)

.
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If N > 2, then all three modes are present:

u(x, t) =

N−2
∑

j=1

[aje
−r1t + bje

−r2t] sin

(

jπ

L
x

)

+ e−βt/2[aN−1 + bN−1t] sin

(

(N − 1)π

L
x

)

+ e−βt/2
∞
∑

j=N

[aj cos(ωt) + bj sin(ωt)] sin

(

jπ

L
x

)

.

The coefficients for the overdamped (if present) and underdamped modes are obtained
as above:

aj =
2

L(r2 − r1)

∫ L

0

[r2u0(x) + v0(x)] sin

(

jπ

L
x

)

dx

bj =
2

L(r1 − r2)

∫ L

0

[v0(x) + r1u0(x)] sin

(

jπ

L
x

)

dx

for j = 1, 2, . . . , N − 2 and

aj =
2

L

∫ L

0

u0(x) sin

(

jπ

L
x

)

dx (12)

bj =
2

ωL

∫ L

0

(

β

2
u0(x) + v0(x)

)

sin

(

jπ

L
x

)

dx

for j = N,N + 1, N + 2, . . ..
We can deal with the coefficients for the critically damped mode independently.

Let us set

U = uN+1 = e−βt/2[aN−1 + bN−1t] sin

(

(N − 1)π

L
x

)

.

Then

U(x, 0) = aN−1 sin

(

(N − 1)π

L
x

)

and we conclude that formula (12) holds also for j = N − 1. Differentiating with
respect to t, we find

Ut(x, t) = e−βt/2

[(

1− β

2
t

)

bN−1 −
β

2
aN−1

]

sin

(

(N − 1)π

L
x

)
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and

Ut(x, 0) =

[

bN−1 −
β

2
aN−1

]

sin

(

(N − 1)π

L
x

)

.

It follows that

bN−1 =
β

2
aN−1 +

2

L

∫ L

0

v0(x) sin

(

(N − 1)π

L
x

)

dx

=
2

L

∫ L

0

[

β

2
u0(x) + v0(x)

]

sin

(

(N − 1)π

L
x

)

dx

Again, we have found the coefficients for every mode.
The only difference using eigenfunction expansion is that we begin by assuming a

solution of the form

u(x, t) =

∞
∑

j=1

Bj(t) sin

(

jπ

L
x

)

and plug this into the PDE. From this we get

ρ

∞
∑

j=1

B′′
j (t) sin

(

jπ

L
x

)

= −ǫ

∞
∑

j=1

j2π2

L2
Bj(t) sin

(

jπ

L
x

)

− β

∞
∑

j=1

B′
j(t) sin

(

jπ

L
x

)

.

Combining the series we get

∞
∑

j=1

{

ρB′′
j + βB′

j +
ǫj2π2

L2
Bj

}

sin

(

jπ

L
x

)

= 0.

Thus, we have a Fourier expansion of the (spatial) constant zero function, so all the
coefficients should vanish. This gives us the ODEs

ρB′′
j + βB′

j +
ǫj2π2

L2
Bj = 0

for j = 1, 2, 3, . . . which should be precisely the same ODEs considered above. Thus,
the analysis proceeds as above from here.

At this point we have essentially complete parts (a) and (b) of the hint. We have
been able to apply the qualitative designations of underdamped, critically damped,
and overdamped to specific modes (or separated variable solutions) of the continuum
modeled by the wave equation, but it is still not entirely clear what this means for
the 1-D continuum as an oscillator. In order to explore the relation between the
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damping coefficient β and the qualitative behavior of the continuum, we turn first to
the behavior of specific separated variables solutions. If we take the fundamental (or
lowest frequency) mode we obtain for βL < 2π (CASE 1)

u1(x, t) = e−βt/2[a1 cos(ωt) + b1 sin(ωt)] sin
(πx

L

)

where

ω = ω1 =

√

π2

L2
− β2

4
.

We can further simplify the oscillation by considering full initial displacement and
zero initial velocity:

u1(x, t) = ae−βt/2 cos(ωt) sin
(πx

L

)

. (13)

Thus, the wave form sin(πx/L) decays exponentially but still oscillates passing through
the equilibrium position u ≡ 0 (though not at equilibrium because the velocity is
nonzero) infinitely many times. This is completely analogous to the ODE oscillator
giving simple harmonic motion; this is very much as expected. See the animation
with L = β = 1. It’s not so easy to represent these oscillations using static figures, so
I’m just going to refer to the Mathematica notebook. It is relatively easy to visualize
the evolution represented by (13).

From this case of a single underdamped fundamental mode, there are two obvious
directions in which to proceed. We can add further (underdamped modes) and/or we
can increase the damping coefficient β. Let us do the latter first. For βL = 2π, we
have

u1(x, t) = e−πt/L[a1 + b1t] sin
(πx

L

)

.

We see from our computation of the coefficients in CASE 3 when N = 2 and j = N−1
that even if the initial velocity v0 ≡ 0 we do not get zero for b1. More precisely, for
pure displacement to the fundamental wave form a sin(πx/L) and zero initial velocity

a1 =
2a

L

∫ L

0

sin2
(πx

L

)

dx = a

and

b1 =
β

2
a1 =

πa

L
.

Therefore, in this case the simplified expression for u1 is

u1(x, t) = ae−πt/L

[

1 +
πt

L

]

sin
(πx

L

)

.
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We see, as expected, that this solution tends monotonically to the equilibrium position
(without ever reaching it) just like a 1-D harmonic oscillator. See the animation.

We can arrange to have one pass through the equilibrium position by choosing
the initial position to be the equilibrium position u ≡ 0 along with some nonzero
initial velocity v0. Or we can also, in principle, choose u0 close to u ≡ 0 and v0 large,
but this is rather more difficult—maybe a challenge problem. Let us consider the
simpler possibility. We cannot choose any initial velocity v0 arbitrarily or else we will
introduce other modes. In this case, we know all other modes are underdamped, so
if we take u0 ≡ 0, and we want all the coefficients for the other modes to vanish we
need simply

∫ L

0

v0(x) sin

(

jπ

L
x

)

= 0 for j = 2, 3, 4, . . .

This comes from considering the underdamped coefficients in CASE 3. The natural
choice is

v0(x) = b sin

(

jπ

L
x

)

.

With this choice a1 = 0 and

b1 =
2b

L

∫ L

0

sin2
(πx

L

)

dx = b.

The animation gives what we would expect. Running slightly backwards in time we
can see a solution of the challenge problem.

Before we leave the critically damped fundamental mode, I’ll leave you with one
more obvious question: We’ve noted that starting in the position of full extension
with zero velocity does not correspond to b1 = 0. What initial condition(s) for the
critically damped fundamental mode do correspond to a1 = a 6= 0 and b1 = 0?

The only thing that should really change when the fundamental mode is over-
damped with βL > 2π is the rate of decay, and that is more or less clear from the
formula:

u1(x, t) =
[

a1e
−r1t + b1e

−r2t
]

sin
(πx

L

)

.

Here we have from (11)

r1 =
β

2
+

√

β2

4
− π2

L2
> r2 =

β

2
−

√

β2

4
− j2π2

L2
.

The discussion above makes it essentially clear that a similar behavior occurs for
each isolated mode of a particular spatial frequency jπ/L, j = 2, 3, 4, . . .. In this case,
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when βL < jπ, there will be oscillations (at a higher frequency) of the continuum
with the appropriate wave form; see the animation for j = 2. We’ve used

u2(x, t) = e−βt/2[a1 cos(ω1t) + b1 sin(ω1t)] sin(2πx/L)

with β = 1/5, a1 = 1, b1 = 0, and L = 1 and

ω1 =

√

4π2

L2
− β2 =

1

5

√
100π2 − 1.

For the critically and overdamped cases with such an isolated mode, one will
also get relatively rapid decay (with possibly one pass through equilibrium) to the
equilibrium with essentially no oscillation. See the animation for j = 3 where we have
used

u3(x, t) = e−3πt(a1 + b1t) sin(3πx)

with b1 = 0 to gain possibly some insight to the question about the critically damped
case above.

The next thing to do is to start mixing modes, i.e., including more than one wave
form. We can start with the first mode underdamped and then the second mode will
also be underdamped. We will use the expression for u2 above with β = 1/5 along
with u1 from (13) with β = 1/5 and consider

u(x, t) = u1(x, t) + µu2(x, t).

We can change the multiple µ of the second mode as well as the time shift determined
by the coefficients a2 and b2 of the oscillation terms in u2. Our first animation is
of a small amplitude perturbation of u1 with the second mode also starting from
zero velocity and full extension. Various animations are given. It is not entirely
clear what qualitative commentary can be made about these somewhat complicated
superpositions.

It is clear that if the damping increases and various modes (spatial wave forms)
are present so that both overdampled/critically damped modes are present along
with underdamped modes, then the lower frequency modes will damp out first and
the higher (underamped) modes will continue to oscillate. Let’s move on to the final
part of the hint.

The final part of the hint, part (d), is to try something that requires a full series
solution with all the modes. I chose a square wave u0(x) = 1 with v0 = 0. Of course,
this is not compatible with the boundary conditions, but in some sense that just
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makes things more interesting. You can see the result in my Mathematica notebook.
When βL < 2π we have what we would expect with all modes underdamped, namely
oscillation. It becomes a bit difficult to distinguish the oscillations of the higher
modes.

When β is increased so that βL = 2π and the first mode becomes critically
damped, the behavior is quite striking. We can see the square wave execute criti-
cally damped decay with the higher modes oscillating upon it. See the Mathematica
notebook. So at least in this case, the critical damping more or less dominates the
evolution of the continuum.
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Problem 5 (sagging equilibrium, Haberman 4.2.1) Consider a deformation w∗ :
[0, L] → [0, L] of a one-dimensional elastic continuum with constant equilibrium den-
sity ρ > 0 and constant elasticity ǫ with w∗(0) = 0, w∗(L) = L, and w′

∗ > 0. Let
y : [0, L] → [−L, 0] by y(x) = −w∗(x) give a vertical representation of the deforma-
tion. Assume w∗ is an equilibrium for the forced wave equation

ρwtt = ǫwxx + ρg

where g > 0 is a gravitational constant.

(a) Find w∗ and determine conditions under which w∗ is admissible. Hint: Non-
admissibility may arise is w∗(x) /∈ [0, L] for some x ∈ (0, L) or if w′

∗(x) < 0 for
some x. You may wish to consider the relation of these two conditions and the
borderline condition in which w′

∗(x) = 0 for some x.

(b) Use mathematical software to illustrate the hanging (and sagging) configuration
given by y (for some specific values of the constants).

(c) Let u∗ : [0, L] → R by u∗(x) = −y(x) − x. Find the boundary value problem
satisfied by u∗ and plot the graph of u∗ (for some specific values of the constants).

Note: There was a typo in the original posting of this problem. Specifically, the
values of u∗ were given as u∗(x) = −y(x)+x. This is incorrect. The motivation
behind this part of the problem is that w∗ should be obtained by adding x to
a solution of the same equation with homogeneous boundary values. That is,
w∗ = u∗ + x. This means −y = u∗ + x or u∗ = −y − x. Sorry about that.

Solution:

(a) The equilibrium equation associated with the PDE above is

w′′
∗ = −ρg

ǫ
(14)

This has general solution

w∗ = −ρg

2ǫ
x2 + ax+ b,

and we conclude from the boundary conditions w∗(0) = 0 and w∗(L) = L that
b = 0 and a = 1 + ρgL/(2ǫ). Therefore we have

w∗(x) = −ρg

2ǫ
x2 +

(

1 +
ρg

2ǫ
L
)

x. (15)
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Note: For a free-hanging elastic continuum like the slinky we can use a balance
of forces to obtain the equilibrium equation (14), but this is not so easy with
the “lower” endpoint fixed at x = L. My notes on the wave equation contain
a detailed variational derivation of the equilibrium equation for w∗ under these
conditions. This is equation (13) near the top of page 10 in the notes. The
derivations of the wave equation in those notes can also be adapted to give the
PDE above.

For admissibility we need w′
∗ > 0, that is,

−ρg

ǫ
x+ 1 +

ρg

2ǫ
L > 0 for 0 ≤ x ≤ L.

Notice that the lowest value of this expression occurs when x = L, we we need
(and it is sufficient to have)

−ρg

ǫ
L+ 1 +

ρg

2ǫ
L = 1− ρg

2ǫ
L > 0,

that is,
ρg

2ǫ
L < 1.

This condition along with the boundary conditions w∗(0) = 0 and w∗(L) = L
ensure that w∗(x) satisfies 0 < w∗(x) < L for 0 < x < L, and any such
equilibrium should be physically admissible at least in the absence of other
conditions (like the condition w′

∗ ≥ 1 for the slinky). The borderline case in
which

ρg

2ǫ
L = 1

leads to a configuration in which w′
∗(L) = 0. Of course, this would not be admis-

sible for a slinky, but even for a more general elastic continuum this corresponds
to a deformation with unbounded material density as the material density is
given (as discussed on page 5 of my notes on the wave equation) by

µ(x) =
ρ

w′
∗(x)

.

Generally, this sagging equilibrium has maximum density at the “lower” w∗(L) =
L, but presumably the “bunching” that takes place at this end may be assumed
bounded.
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Figure 13: Sagging equilibrium (Part (b))

Figure 14: The sagging function u∗. (Part (c))

(b) ρgL = ǫ should be okay.

(c) If u∗ = −y − x = w∗ − x, then

{

u′′
∗ = −ρg/ǫ, 0 < x < L

u∗(0) = 0 = u∗(L).

We have from the formula in (15) above

u∗(x) = w∗(x)− x = −ρg

2ǫ
x2 +

ρg

2ǫ
L x.

With ρgL = ǫ this becomes u∗(x) = x(1 − x)/2. This is trivial to plot.
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I received a request to make my assignments shorter, starting with Assignment 6
(this assignment). I will make this assignment shorter in the following sense:

You have my official permission to consider the five problems above to be the
entirety of Assignment 6 = Exam 2. I think the problems below are very interesting,
and you can learn many potentially useful things if you do them. I will, however,
make an effort to exclude the things you might learn from being required for future
assignments in this course. I don’t make any guarantees concerning the success of
that effort.

Problem 6 (Hamilton’s action principle for the motion of a point mass) Show that
motions x : [0, T ] → R

n satisfying Newton’s second law

M ẍ = f

are stationary points for the action functional A : X → R by

A[x] =

∫ T

0

[

Φ(x, t)− 1

2
M |v|2

]

dt

where X is the admissible class

X = {x ∈ C2([0, T ] → R
n) : x(0) = x0,x(T ) = p}.

Hint: I’m leaving it to you to figure out the relation between the potential Φ and the
force f .

Solution: The first variation of the action here is calculated as follows:

d

dǫ

∫ T

0

[

Φ(x + ǫξ, t)− 1

2
M |ẋ+ ǫξ̇|2

]

dt =

∫ T

0

[

DΦ(x + ǫξ, t) · ξ −M (ẋ+ ǫξ̇ · ξ̇
]

dt.

Therefore,

δA
x
[ξ] =

∫ T

0

[

DΦ(x, t) · ξ −M ẋ · ξ̇
]

dt.

For compactly supported variations ξ we can integrate by parts to write

∫ T

0

ẋ · ξ̇ dt = −
∫ T

0

ẍ · ξ dt.
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Making this substitution we have for compactly supported variations

δA
x
[ξ] =

∫ T

0

[DΦ(x, t) +M ẋ] · ξ̇ dt.

If this vanishes for all compactly supported ξ, then we obtain the vector equation

M ẍ = −DΦ(x, t).

Note that we can, for example, take ξ to be nonzero in only one component and thus
obtain the vector equation componentwise (in each component one at a time). In any
case, a potential function Φ for a field of force f is a real valued function for which

−DΦ(x, t) = f(x, t).

Thus, we obtain Newton’s second law:

M ẍ = f .
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Problem 7 (equilibrium under tension) Derive a model for the elastic deforma-
tion/motion with respect to time for a function w : [0, L0]× [0, T ) → [0, L0] in

W = {w ∈ C2([0, L0]× [0, T )) : w(0, t) = 0, w(L0, t) = L0, wx(0, t) > 0 for t ≥ 0}

under the following assumptions: The evolving one-dimensional continuum is modeled
on an initial equilibrium interval [0, L] with L < L0 using an initial extension
w0 : [0, L] → [0, L0] by w0(x) = L0x/L and initial tension given by

F = −ǫ(w′
0 − 1).

You may assume constant density ρ and elasticity ǫ. You may use any of the three
approaches presented in my notes on the wave equation (or some other approach if you
like), that is, Newton’s second law according to continuum assumption A, the momen-
tum force relation of continuum assumption B, or Hamilton’s principle of stationary
action.

Solution: I will use Hamilton’s principle starting on page 17 of my notes on the
wave equation. The key observation is that the action for the motion w : [0, L0] ×
[0, T ] → [0, L0] may be calculated with respect to the initial interval [0, L] using the
composition:

A[w] =
1

2

∫ T

0

∫ L

0

{

ǫ[(w ◦ w0)x − 1]2 − ρ[(w ◦ w0)t]
2
}

dx dt.

Then we can change variables ξ = w0(x) with dξ = w′
0 dx = (L0/L) dx to write

A[w] =
L

2L0

∫ T

0

∫ L0

0

{

ǫ[wx − 1]2 − ρ[wt]
2
}

dx dt.

Then the derivation goes as before with

δAw[φ] =
L

L0

∫ T

0

∫ L0

0

{ǫ[wx − 1]φx − ρwtφt} dx dt

=
L

L0

∫ T

0

∫ L0

0

{−ǫwxx + ρwtt}φ dx dt

for compactly supported variations φ : (0, L0) × (0, T ) → R. Thus, deformations
w : [0, L0]× [0, T ] → [0, L0] with stationary action satisfy

ρwtt = ǫwxx

by the fundamental lemma of the calculus of variations.
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Problem 8 (slinky/modeling) Note that the equilibrium of Problem 5 above requires
that compression from the equilibrium (w′ < 0) is possible, and this is not possible
for a slinky. Using the result of Problem 7 above, model the equilibrium position
of an elongated slinky suspended vertically and sagging due to constant downward
gravitational acceleration g within an interval [0, L0] of length L < L0. Hint: There
should be three distinct cases depending on whether or not L0 exceeds the length of
the slinky with a free hanging end.

Solution: The natural (free hanging) length would be that satisfying

w∗ = −ρg

2ǫ
x2 + ax+ b,

from Problem 5 with w∗(0) = 0 and w′(L) = 0 corresponding to no tension at the
free end. This would imply

w∗(x) = −ρg

2ǫ
x2 +

(

1 +
ρg

ǫ
L
)

x. (16)

If the end at L0 just happens to be fixed at

w∗(L) = L+
ρg

2ǫ
L2 (17)

given by this particular deformation, then this will be the solution. This gives us a
kind of middle case.

The shorter length case is when

L < L0 < L+
ρg

2ǫ
L2.

In this case, we should expect some portion of the slinky to “pile up” with w′
∗(x) ≡ 1

on some interval L1 ≤ w ≤ L0. The length L1 will be the free hanging length of a
shorter portion [0, L− (L0 −L1)] of the original slinky. Substituting L− (L0 −L1) =
L+ L1 − L0 in for L in (17) and setting the result equal to L1, we find

L+ L1 − L0 +
ρg

2ǫ
(L+ L1 − L0)

2 = L1.

This means we must have

L1 = L0 − L+

√

2ǫ(L0 − L)

ρg
. (18)
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Thus, for sagging deformations with fixed endpoint at L0 > L satisfying

L < L0 < L+
ρg

2ǫ
L2. (19)

we have

w∗(x) =











−ρg

2ǫ
x2 +

(

1 +
ρg

ǫ
[L− (L0 − L1)]

)

x, 0 ≤ x ≤ L− (L0 − L1)

L0 − L+ x, L− (L0 − L1) ≤ x ≤ L

where the “pile up” length L1 is given by (18). Notice that for this to make sense we
need 0 < L0 − L1 < L. For the left inequality, note that by (19)

L0 − L <
ρg

2ǫ
L2.

Both sides in this inequality are positive so that this implies

L >

√

2ǫ

ρg
(L0 − L).

In view of (18) this means L1 < L0. Also in view of (18) the inequality L0 − L1 < L
follows immediately because

L0 − L1 = L−
√

2ǫ

ρg
(L0 − L) < L.

The discussion would also work if we have equality L0 = L, but this is a rather
uninteresting case since then the slinky is not extended at all and w∗(x) = x.

The final case is when the slinky is extended beyond its natural free hanging length
with

L0 > L+
ρg

2ǫ
L2. (20)

In this situation we return to the form from Problem 5

w∗ = −ρg

2ǫ
x2 + ax+ b,

but require w∗(0) = 0 and w∗(L) = L0. This gives

w∗(x) = −ρg

2ǫ
x2 +

1

L

(

L0 +
ρg

2ǫ
L2

)

x. (21)
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In this case, the derivative is given by

w′
∗(x) =

1

L

(

L0 +
ρg

2ǫ
L2

)

− ρg

ǫ
x

which takes its smallest value at x = L with

w′
∗(L) =

1

L

(

L0 +
ρg

2ǫ
L2

)

− ρg

ǫ
L =

L0

L
− ρg

2ǫ
L.

In this case we can write the condition (20) as

L0 −
ρg

2ǫ
L2 > L

so that dividing by L we have

w′
∗(x) ≥ w′

∗(L) =
L0

L
− ρg

2ǫ
L > 1.

Thus, the stretched extension (21) is admissible and models the sagging due to gravity
in this case.

Problem 9 (center of mass) Consider the modeling of the motion of a one-dimensional
elastic continuum by a function w : [0, L]× [0, T ) → R in

W = {w ∈ C2([0, L]× [0, T )) : wx > 0}

where the elasticity ǫ = ǫ(x) is spatially dependent and in the presence of a potential
field Φ : R → R according to which the potential energy associated with the field Φ
for a given configuration w is given by

EΦ = EΦ(t) =

∫ L

0

Φ(w) dx.

(a) Using Hamilton’s principle of stationary action (see my notes on the wave equa-
tion), derive a forced wave equation for the evolution of w. Hint: Your answer
should be (something like)

ρwtt = [ǫ(wx − 1)]x + f

where f(w, x, t) = −Φz(w, x, t).

45



(b) Let [a, b] ⊂ (0, L) be an equilibrium subinterval and let

pcm =

∫ b

a

ρw(x, t) dx

∫ b

a

ρ dx

be the center of mass of the deformed interval [w(a, t), w(b, t)]. Show that

Mp̈cm =

(
∫ b

a

ρ dx

)

d2

dt2
pcm

is the sum of the forces at the endpoints of [w(a, t), w(b, t)]. Hint(s): Differen-
tiate under the integral sign and then use the PDE. The forces you should get
are of two kinds: tension forces from the deformation and field forces from the
external forcing.

Solution:

(a) We can use essentially the same action used on my notes on page 17 of my
notes and in Problem 7 above except that we do not need to worry about an
initial homogeneous deformation, so the composition can be avoided, and (most
importantly) we need to complement the potential portion of the action with a
time integral of the potential energy due to the field:

A[w] =
1

2

∫ T

0

∫ L

0

{

ǫ[wx − 1]2 + Φ(w)− ρ[wt]
2
}

dx dt.

Remembering that elasticity depends on x, the first variation is given by

δAw[φ] =

∫ T

0

∫ L

0

{ǫ(wx − 1)φx + Φ′(w)φ− ρwtφt} dx dt

=

∫ T

0

∫ L

0

{−[ǫ(wx − 1)]x + Φ′(w) + ρwtt}φ dx dt

for compactly supported variations φ : (0, L)× (0, T ) → R. Thus, deformations
w : [0, L]× [0, T ] → R with stationary action satisfy

ρwtt = [ǫ(wx − 1)]x − Φ′(w)
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by the fundamental lemma of the calculus of variations. Naturally, in the 1-D
spatial domain the gradient of the potential function is DΦ = Φ′ = −f , so our
PDE is

ρwtt = [ǫ(wx − 1)]x + f.

A couple notes: I’ve done the integration by parts both here and in Problem 7
in a little bit of a cavalier1 manner just integrating by parts in each variable
separately. This is okay in the sense that I get the correct answer. If I wanted
to do this correctly, I should recognize the double integral containing the terms
with φx and φt factors as a dot product of a certain vector field with the full
space and time gradient Dφ = (φx, φt). Then I would use the product
rule and the divergence theorem as usual for the higher dimensional version
of integration by parts. I think I did all this pretty carefully in my notes on
the wave equation and certainly in some other notes related to the calculus of
variations for functions of several variables, so you can go back and read about
it there if you like.

One thing to note about this whole business is that usually when we write a
gradientDφ in the context of evolution equations (like the heat equation and the
wave equation or even Laplace’s equation where there is no time dependence) we
mean only the spatial gradient, the vector containing the partial derivatives
with respect to the spatial variables. In this case, the spatial gradient would be
Dφ = φ′, but the full space and time gradient used above is a different thing.

Finally, I didn’t mention it, but the derivation here is okay if the density ρ
depends on x. This is the case because the t derivative in the integration by
parts does not effect ρ = ρ(x). Now, if we had ρ = ρ(x, t) with time dependent
density, we would get something different, but that would model a very different
physical situation, e.g., it’s somewhat difficult to imagine a one-dimensional gas
with an elastic energy.

And as a final final note there is a small typo at the end of the statement of
part (a) above. It should read where f(x) = −Φ′(w(x)). We’re only considering
a fixed spatially dependent potential function Φ : R → R with Φ = Φ(w). The
potential for the equilibrium reference position with x ∈ [0, L] and the potential
on the line for the motion are the same, so it doesn’t make sense to have Φ
to depend on both w and x positions. On the other hand, time dependence
would be okay with Φ = Φ(x, t), but then we should have Φ : R × [0, T ) → R

1cavalier (adj.) having or showing no concern for something that is important or serious
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which is different from what is stated in the first part of the description of the
problem. You can of course think of Φ as the constant gravitational potential,
i.e., Φ ≡ −ρgx.

(b) Differentiating under the integral sign we have

p̈cm =
1

M

∫ b

a

ρwtt dx =
1

M

∫ b

a

{[(ǫ(wx − 1)]x + f} dx

where

M =

∫ b

a

ρ dx.

Notice that here I really am considering ρ = ρ(x). You get M = ρ(b − a) for
the mass of the deformed segment if ρ is constant. The fundamental theorem
of calculus may be applied to the first term:

Mp̈cm = ǫ(b)[wx(b, t)− 1]− ǫ(a)[wx(a, t)− 1] +

∫ b

a

f(w(x)) dx.

Thus, we have Newton’s second law applied to the center of mass. The tension
forces at the ends

ǫ(b)[wx(b, t)− 1]− ǫ(a)[wx(a, t)− 1] = τ(b)− τ(a)

are given first and then the force from the field

∫ b

a

f(w(x)) dx.

I neglected to mention the field force term in the statement of the problem
because I had in mind the special case when f = 0, i.e., there is no potential.
But if the potential field is there, this is a natural term to see in Newton’s
second law. We can interpret this scalar quantity as a single force acting at the
center of mass pcm. This can be made a bit more precise (and convincing) if we
take Φ = −ρgx with ρ constant. Then we can write

∫ b

a

f(w(x)) dx =

∫ b

a

ρg dx = Mg.

Note that we have the positive sign here because we are using the horizontal
model in which gravity points to the right. Probably the cleanest way to think
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about this, however, is the one unintentially suggested in the statement of the
problem with Φ ≡ 0. Then you see the regular wave equation has, as a conse-
quence, that the center of mass for each deformed subinterval moves according
to Newton’s second law subject to the tension forces at the ends. Thus, at least
this is a consistent assumption to use in deriving the wave equation; see the
discussion of continuum assumption A in my notes on the wave equation.
In that particular discussion I was also assuming constant elasticity ǫ, but the
discussion can easilly be generalized to spatially dependent elasticity.

Problem 10 (Conservation of energy; Haberman 4.4.9-13) Consider the potential
energy

E(t) =
ǫ

2

∫ L

0

(wx − 1)2 dx,

the kinetic energy

K(t) =
1

2

∫ L

0

ρw2
t dx,

and the total energy E(t) = E(t) +K(t) associated with a one-dimensional elastic
motion w : [0, L]× [0, T ) → [0, L] satisfying

{

ρwtt = ǫwxx, on (0, L)× (0, T )
w(0, t) = 0 = w(L, t), t > 0.

(22)

(a) Compute the derivative Ė(t) of the energy with respect to time to obtain the
general formula

Ė(t) = ǫ[wx(L, t)− 1]wt(L, t)− ǫ[wx(0, t)− 1]wt(0, t).

(b) Conclude that the total energy is conserved for solutions of (22).

(c) What other (natural) boundary conditions result in conservation of energy?

Solution:
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(a)

Ė(t) = d

dt

{

ǫ

2

∫ L

0

(wx − 1)2 dx+
1

2

∫ L

0

ρw2
t dx

}

=

∫ L

0

[ǫ(wx − 1)wxt + ρwtwtt] dx

=

∫ L

0

[

ǫ(wx − 1)
∂

∂x
wt + ǫwtwxx

]

dx

= ǫ

∫ L

0

[

(wx − 1)
∂

∂x
wt + wxxwt

]

dx

= ǫ

∫ L

0

∂

∂x
[(wx − 1)wt] dx

= ǫ[wx(L, t)− 1]wt(L, t)− ǫ[wx(0, t)− 1]wt(0, t).

(b) If w(0, t) = 0 for all t, we can differentiate this relation and conclude

wt(0, t) = 0.

Similarly, we have for (22) that wt(L, t) = 0. Thus, Ė(t) vanishes as claimed.
Note: One cannot conclude from these boundary conditions that wx(L, t) = 0
or wx(0, t) = 0 or wx(0, t) = 1 or anything like that because there is no x
dependence in the boundary condition w(0, t) = 0 to differentiate.

(c) Among the alternative boundary conditions leading to conservation of energy are
those in which there prevails a free end condition wx − 1 = 0:

w(0, t) = 0, wx(L, t) = 1, t > 0 (left end fixed, right end free)

or

wx(0, t) = 1, w(L, t) = 0, t > 0 (left end free, right end fixed)

or
wx(0, t) = 0, wx(L, t) = 1, t > 0 (both ends free).

Note there could be lots of other possibilities in which the two ends have po-
sitions and tensions changing with time so as to cancel and make the quantity
Ė(t) vanish.
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