# Assignment 7: Wave equation and Sturm Liouville Theory Due Tuesday December 7, 2021 

John McCuan

December 11, 2021

Problem 1 (d'Alembert's solution, Haberman 4.4.6-8) Consider the initial value problem for the 1-D wave equation

$$
\begin{cases}u_{t t}=\sigma^{2} u_{x x} & \text { on } \mathbb{R} \times(0, \infty) \\ u(x, 0)=u_{0}(x), & x \in \mathbb{R} \\ u_{t}(x, 0)=v_{0}(x), & x \in \mathbb{R}\end{cases}
$$

where $u_{0}, v_{0} \in C^{1}(\mathbb{R})$ are two given functions.
(a) Let $L u=u_{t}+\sigma u_{x}$ and $M u=u_{t}-\sigma u_{x}$. Use the method of characteristics (twice) applied to the factorization $\square u=M L u=0$ to obtain d'Alembert's solution

$$
u(x, t)=\frac{1}{2}\left[u_{0}(x-\sigma t)+u_{0}(x+\sigma t)\right]+\frac{1}{2 \sigma} \int_{x-\sigma t}^{x+\sigma t} v_{0}(\xi) d \xi
$$

(b) Show that if $u_{0}$ and $v_{0}$ are both odd and periodic with period $2 L$, then the restriction of d'Alembert's solution to $[0, L] \times(0, \infty)$ satisfies the initial/boundary value problem

$$
\begin{cases}u_{t t}=\sigma^{2} u_{x x} & \text { on } \mathbb{R} \times(0, \infty) \\ u(0, t)=0=u(L, t), & t \geq 0 \\ u(x, 0)=u_{0}(x), & x \in \mathbb{R} \\ u_{t}(x, 0)=v_{0}(x), & x \in \mathbb{R}\end{cases}
$$

(c) Consider the initial/boundary value problem

$$
\begin{cases}u_{t t}=\sigma^{2} u_{x x} & \text { on } \mathbb{R} \times(0, \infty) \\ u(0, t)=0=u(L, t), & t>0 \\ u(x, 0)=g(x), & x \in \mathbb{R} \\ u_{t}(x, 0)=h(x), & x \in \mathbb{R}\end{cases}
$$

where $g, h \in C^{1}[0, L]$. Can d'Alembert's solution be applied to solve this problem? Why or why not?

Problem 2 (The heat equation on $\mathbb{R}$; fundamental solution, Haberman section 10.4) We have considered special solutions of the heat equation having the form

$$
u(x, t)=e^{-j^{2} \pi^{2} t / L^{2}} \cos \left(\frac{j \pi}{L} x\right) \quad \text { and } \quad u(x, t)=e^{-j^{2} \pi^{2} t / L^{2}} \sin \left(\frac{j \pi}{L} x\right)
$$

on the interval $[0, L]$. These are separated variables solutions. They can, of course, also be considered as solutions on all of the spatial domain $\mathbb{R}$, but that consideration is not so interesting because they are spatially periodic. There is another important solution of the heat equation to know about and remember.

The function $\Phi: \mathbb{R} \times(0, \infty) \rightarrow \mathbb{R}$ given by

$$
\Phi(x, t)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}}
$$

is called the fundamental solution of the one-dimensional heat equation. Notice that the fundamental solution does not have the form of a separated variables solution.
(a) Verify that $\Phi$ satisfies $u_{t}=u_{x x}$ for $(x, t) \in \mathbb{R} \times(0, \infty)$.
(b) Use L'Hopital's rule to determine

$$
\lim _{t \searrow 0} \Phi(x, t) .
$$

(c) Make an animation of the spatial graph of the fundamental solution $\Phi$ with animation parameter $t$.
(d) Calculate the spatial $L^{1}$ norm

$$
I(t)=\int_{x \in \mathbb{R}} \Phi(x, t)
$$

of the fundamental solution. Hint(s): Note that $I(t)=2 J(t)$ where

$$
J(t)=\int_{0}^{\infty} \Phi(x, t) d x
$$

Calculate $J(t)^{2}$. Use $y$ as a spatial variable of integration in one of the factors $J(t)$. Write what you get as an iterated integral and then as an integral of a function of two variables over the first quadrant. Use polar coordinates.
(e) How could you modify $\Phi$ so that it satisfies $u_{t}=k u_{x x}$ for non-unitary conductivity? Hint(s): Remember Problem 1 from Assignment 3 = Exam 1 about scaling in space and time. Also read section 10.4 of Haberman and see what Haberman defines as the fundamental solution.
(f) Given $u_{0}: \mathbb{R} \rightarrow \mathbb{R}$ with $u \in C^{0}(\mathbb{R})$, the function

$$
u(x, t)=\int_{\xi \in \mathbb{R}} \Phi(x-\xi, t) u_{0}(\xi)
$$

is called the spatial convolution of the fundamental solution with $u_{0}$. Show that this spatial convolution satisfies the initial value problem

$$
\begin{cases}u_{t}=u_{x x} & \text { on } \mathbb{R} \times(0, \infty) \\ u(x, 0)=u_{0}(x), & x \in \mathbb{R}\end{cases}
$$

for the heat equation on the whole real line.
(g) (Bonus) How can you modify the one-dimensional fundamental solution of the heat equation to obtain the fundamental solution of the heat equation $\Phi: \mathbb{R}^{n} \times$ $(0, \infty) \rightarrow \mathbb{R}$ on (all of) $\mathbb{R}^{n}$ ?

Problem 3 (wave equation: transverse oscillation model; Haberman section 4.2)
In the transverse oscillation model for the wave equation (think of the wave equation as a model for the vibration of a guitar string) one may assume a tension $T$ and a lineal density $\rho$ for the string. Thus, the mass of a small portion of the string modeled by the graph of a function $u:[0, L] \rightarrow \mathbb{R}$ over the interval $[a, b] \subset(0, L)$ is approximately $\rho(b-a)$. Thus, Newton's second law of motion ( $F=M a$ ) for the transverse displacement $u$ gives (approximately)

$$
\begin{equation*}
M a_{\text {transverse }}=\rho(b-a) u_{t t}\left(x^{*}, t\right) \approx F_{\text {transverse }}(b, t)+F_{\text {transverse }}(a, t) \tag{1}
\end{equation*}
$$

where $x^{*}$ is some point with $x^{*} \in(a, b)$ and $F_{\text {transverse }}$ is the component of the tension force orthogonal to the (equilibrium of the) string, i.e., the vertical component if the equilibrium of your string is horizontal.
(a) Draw a picture of the graph of $u$, representing the position of the string above the interval $(a, b)$ at time $t$. Draw your picture so that $u_{x}(a, t)$ and $u_{x}(b, t)$ are different, i.e., so that the string is curving over the interval $[a, b]$.
(b) If $T$ represents the tension in the string to the right and is always tangent to the string, use similar triangles to find the components $F_{\text {transverse }}(a, t)$ and $F_{\text {transverse }}(b, t)$ of $T$ at $x=a$ and $x=b$ respectively.
(c) Substitute your values from part (b) into (1), divide by $b-a$ and take the limit as $b, a \rightarrow x$ to obtain the wave equation for $u$.

Problem 4 (variable tension, transverse oscillations of a hanging chain; O'Neil Advanced Engineering Mathematics section 6.1)
(a) If your derivation in Problem 3 assumed the tension $T$ was constant, go back and derive the wave equation for transverse oscillations in which $T=T(x)$ depends on the position $x$.
(b) Use your model to find the fundamental modes of oscillation (separated variables solutions) for a hanging chain.
(c) Animate some of your fundamental modes.

Problem 5 (transverse oscillations of a rectangular drum, Haberman section 7.3)
(a) Find the separated variables solutions of the boundary value problem

$$
\begin{cases}u_{t t}=\Delta u, & \text { on } R \times[0, \infty) \\ u^{2} \equiv 0, & t>0\end{cases}
$$

for the wave equation on the rectangle $R=[0, L] \times[0, M]$.
(b) Choose specific positive values for $L$ and $M$, and animate some of the fundamental modes you found in part (a).

