
Final Assignment: 1D Wave Equation

Generalized d’Alembert formulas and other topics

Due Thursday December 14, 2023

John McCuan

The wave equation in one space dimension has the form

utt = uxx.

As we have discussed, if this equation is considered for a function u with domain
R× [0,∞) the natural Cauchy data has the form

{

u(x, 0) = u0(x), x ∈ R

ut(x, 0) = v0(x), x ∈ R

along the Cauchy manifold corresponding to time t = 0, that is the x-axis. The
natural (simplest) regularity assumption for a solution in this formulation is u ∈
C2(R× [0,∞)) and under this assumption one obtains d’Alembert’s solution

u(x, t) =
1

2
[u0(x− t) + u0(x+ t)] +

1

2

∫

x+t

x−t

v0(ξ) dξ (1)

which may be considered a kind of starting point for the development below. There
are several topics that will be addressed, but let us think initially about replacing the
real line R with a finite spatial interval [a, b] ⊂ R. The resulting domain [a, b]× [0,∞)
is indicated in Figure 1. Note this domain has interior U = (a, b)× (0,∞).

First note that d’Alembert’s formula (1) is going to have trouble in the case of a
bounded spatial domain because the arguments x−t and x+t may not fall within the
domain of definition of the functions u0 and v0 providing the initial or Cauchy data
as these will only naturally be assumed to be defined on the spatial interval [a, b].
There is still a natural domain

W =

{

(x, t) ∈ U : 0 < t <
b− a

2
−

∣

∣

∣

∣

x−
a + b

2

∣

∣

∣

∣

}
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Figure 1: General 1-D wave domain on a finite spatial interval [a, b]. Natural sub-
domain for d’Alembert solution (center). Extension subdomains and natural first
truncation (right).

as indicated in Figure 1 (center) where (1) is a well-defined formula and can be
expected to hold. In particular, if the initial/Cauchy data satisfies

u0 ∈ C2(a, b) ∩ C0[a, b] and v0 ∈ C1(a, b) ∩ C0[a, b],

then formula (1) defines a function in C2(W ) which solves utt = uxx classically.
We have noted that the formula (1) can make sense for functions u0 and v0 having
considerably less regularity and may still be considered to define some kind of solution
of the wave equation on W . We will discuss a notion of weak solution below which
can partially make sense of this kind of assertion.

For the moment we may think in terms of introducing additional boundary
conditions at the points x = a and x = b. The natural conditions constituting
Cauchy data for the PDE on x = a or x = b would involve prescribing the value
of the function u and the value of some transverse derivative of u. In this case,
with vertical boundary lines x = a and x = b, the easiest choice is to prescribe the
spatial derivative ux. Thus we arrive at an initial/boundary value problem for the
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wave equation having the intimidating form







































utt = uxx, (x, t) ∈ U
u(x, 0) = u0(x), x ∈ (a, b)
ut(x, 0) = v0(x), x ∈ (a, b)
u(a, t) = u−

0 (t), t > 0
ux(a, t) = σ−

0 (t), t > 0
u(b, t) = u+

0 (t), t > 0
ux(b, t) = σ+

0 (t), t > 0.

(2)

The symbol σ here is used because it gives the value of a spatial derivative.
My first objective will be to consider finding an extension of the d’Alembert for-

mula to the domain

W− = {(x, t) ∈ U : −a + x < t < b− x}

as indicated in Figure 1 (right). At each stage I will state results or questions and
leave the corresponding result or question concerning the extension to

W+ = {(x, t) ∈ U : b− x < t < −a + x}

as a problem. Ultimately, we should like to obtain an extension to the entire truncated
domain U1 = W ∪W−∪W+∪W1 indicated in Figure 1 along with appropriate Cauchy
data on the time truncation line t = b− a of the form

{

u(x, b− a) = u1(x), x ∈ R

ut(x, b− a) = v1(x), x ∈ R

for some appropriate Cauchy data functions u1 and v1. Then the entire process may
be repeated to extend the solution u. We will not get to the domain

W1 =

{

(x, t) ∈ U :
b− a

2
+

∣

∣

∣

∣

x−
a+ b

2

∣

∣

∣

∣

< t < b− a

}

in general, but we will consider this extension in a special case at the end. You should
also understand by the end of this assignment precisely how extension to W1 would
be accomplished in general.

As a final note before we get started, some of this material may be considered as inspired
from Chapter 12 section 5 of Richard Haberman’s book Elementary Applied Partial Differ-

ential Equations. Haberman points out in that section that the problem he considers, which
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is a kind of special case of the problem (2) considered in this assignment with homogeneous
zero order boundary conditions and noticeably no first order condition on the boundary,
can be treated/solved using separation of variables and a Fourier expansion. As Haberman
mentions, this approach was considered in his Chapter 2, and it is a pretty straightforward
application of the same separation of variables technique we talked about for the heat equa-
tion and Laplace’s equation. Notice, however, that if you really believe in this sort of thing
as a model of the transverse oscillations of a vibrating string, then it is natural to include
a first order boundary condition corresponding to changing (or forcing) the angle at which
the string meets the zero boundary value, that is a condition like ux(a, t) = σ−

0 (t) and/or
ux(b, t) = σ+

0 (t).

The problem(s) considered here are also related to Problem 4 of Assignment 7 which

was given (by me) in MATH 6702 (Mathematical Methods in the Physical Sciences) in the

Spring of 2023. Most of the techniques in the later parts of the development below were

discussed in the lectures for that course, though the earlier parts were not discussed too

much in the lectures, and I suspect not many of the students were able to, shall we say,

take full advantage of the problem.

The overall organization of the development below is roughly according to the
following outline:

0 Preliminaries

I Method of Characteristics

A First Extension (second PDE v = ut − ux)

B Second Extension (second PDE v = ut + ux)

II Divergence Theorem Method

A The Method

B Regularity and Weak Solutions

III Extension of Cauchy Data (reflection method)

A The Method

B Regularity and Propagation Speed

IV Applications

A Tent Wave

B Problem 4 of Assignment 7 (MATH 6702 Spring 2023)
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Part I Characteristic Methods

Were I to consider (which I am now going to do) applying the method of charac-
teristics to obtain an extended solution u of the wave equation on the domain W−,
then I would have a choice of how to factor the wave operator �u = utt − uxx and
this will effect at least nominally the data that is propagated into the domain W−.
What I will call the “First Extension” in the outline above corresponds to setting

v = ut − ux.

Then we note that vt + vx = 0 because vt + vx = �u. Thus, we have two first order
PDEs. The first PDE we consider is vt + vx = 0. This has characteristic field (1, 1),
and is set up to propagate our new boundary Cauchy data

{

u(a, t) = u−

0 (t), 0 < t < b− a
ux(a, t) = σ−

0 (t), 0 < t < b− a

off the vertical line x = a. This data propagates along a characteristic starting at
some point (a, t0) as indicated in Figure 2 (center).
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Figure 2: Method of characteristics to extend d’Alembert’s solution to W−. The
numerals 1 and 2 have a double meaning in this figure. First there are two choices of
the order of factoring the wave operator. If I factor �u = vt + vx with v = ut − ux,
then the first PDE I consider is vt+ vx = 0, and to solve it I use a characteristic like
the one with the numeral 1 next to it in the center illustration. Were I to factor in
the reverse direction writing �u = wt −wx with w = ut + ux, then my first equation
would be wt − wx = 0, and I would propagate data from the d’Alembert solution
using the backward propagating characteristic with the numeral 2 next to it in the
center illustration. Thus, for the First Extension, I will find v first and then obtain u
using the second PDE ut−ux = v by propagating Cauchy data from the d’Alembert
solution using the characteristic with the numeral 2 next to it in the illustration on
the right. Thus, the numeral 2 in the center illustration may be associated with
the Second Extension involving second PDE ut + ux = w while the 2 in the right
illustration may be associated with solving the second PDE for the First Extension
now under consideration. The idea of Problems 1 and 2 below is that you understand
all this and dance it around appropriately (and skillfully) to find a first extension of
the d’Alembert solution to the domain W+.
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The forward propagating characteristic starting at (a, t0) can be parameterized in
the form

γ(t) = (a+ (t− t0), t) for t ≥ t0.

I keep in mind that the starting point (a, t0) should be chosen in the end so that I
can find the value of v at the point (x, t). This means eventually, I’ll want to take

t0 = a + t− x. (3)

I’ll also need to pick up the value of v = ut − ux at the point (a, t0) as a starting
value. If I do this correctly, then integration will get me

v ◦ γ(t) ≡ v(a, t0).

Leaving out the details, I find

v(x, t) = (u−

0 )
′(a+ t− x)− σ−

0 (a+ t− x). (4)

Problem 1 (first extension toW+, first equation) Factor thewave operator in such
a way that you obtain and solve a homogeneous first order PDE on W+ determined
by Cauchy data

{

u(b, t) = u+
0 (t), 0 < t < b− a

ux(b, t) = σ+
0 (t), 0 < t < b− a

propagated backward in space along a characteristic starting at a point (b, t0) on the
vertical line x = b in the boundary of the heat domain U .

Once I know the solution v given in (4), I am faced with a second PDE, namely

ut − ux = v.

The characteristic field for (the operator in) this PDE is also a constant field, but now
it is backward propagating: (−1, 1). Thus, in order to solve this PDE, I can introduce
a characteristic starting at a point (a+ t0, t0) for some t0 with 0 < t0 < (b− a)/2 and
propagates backwards in space according to

γ(t) = (a+ t0 − (t− t0), t) = (a+ 2t0 − t, t) for t ≥ t0

to the point (x, t) ∈ W−. I can see now that the t0 with which I should start is

t0 =
x+ t− a

2
.
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Now, I have an inhomogeneous PDE, so I get an inhomogeneous ODE

d

dt
u ◦ γ = (u−

0 )
′(2(t− t0))− σ−

0 (2(t− t0)).

If I integrate this ODE correctly, and pick up an initial value u(a + t0, t0) from the
d’Alembert solution on ∂W− ∩ ∂W , then after some simplification (hopefully done
and typed correctly) I find

u(x, t) =
1

2
[u0(a) + u0(x+ t)] +

1

2

∫

x+t

a

v0(ξ) dξ

+
1

2
[u−

0 (a + t− x)− u−

0 (0)]−
1

2

∫

a+t−x

0

σ−

0 (η) dη. (5)

This is a pretty nice formula in some ways. One important property of this formula
is that it does not depend on values of u0 and v0 outside the interval [a, b]. In other
ways the formula (5) is not so great, or at least a little mysterious. We will get into
the potentially troublesome aspects of (5) a little later. For now, let’s see if you can
fill in the details to find a similar formula for extending u to W+.

Problem 2 (First extension to W+) Let v denote the function you found in Prob-
lem 1. Solve the second PDE ut + ux = v on W+ to find an extension formula like
the formula (5) I have given above for W−.

You may have finished Problem 2 with some lack of confidence concerning the
solution you have found, and if you did it correctly we’ll see that you have good
reason to be worried. On the other hand, there is a special case we can consider
which should suggest we are on the right track. It also involves something that is
good to keep in mind.

Here is the basic idea: If there is a way to extend the initial/Cauchy data u0, v0
to all of R so that, for example, the extensions satisfy u0 ∈ C2(R) and v0 ∈ C1(R),
then we should be able to extract from such an extension data on the vertical lines
x = a (my case/extension) and x = b (your case/extension) for which the formula we
found agrees with the d’Alembert solution arising from the extensions. I call this the
basic check. It is a tiny bit subtle, but I’ll indicate in some detail how it goes, then
I’ll leave it to you to apply the basic check to your extension formula from Problem 2.

I start by assuming u0 and v0 are actually defined on all of R, so that d’Alembert’s
formula is globally applicable. This means I can find some special data on x = a from
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the d’Alembert formula, namely,

u−

0 (t) =
1

2
[u0(a− t) + u0(a + t)] +

1

2

∫

a+t

a−t

v0(ξ) dξ

and

σ−

0 (t) =
1

2
[u′

0(a− t) + u′

0(a + t)] +
1

2
[v0(a + t)− v0(a− t)].

Notice the value u−

0 (t) is obtained simply by plugging x = a into the d’Alembert
formula (1) and the value σ−

0 (t) is gotten by differentiating the d’Alembert formula
with respect to x and than plugging x = a into the result. Now, if I take these values
in my formula (5), then what I should get is exactly the d’Alembert formula back.
And that’s what happens with my formula.

Problem 3 (the basic check) Apply the basic check to the extension formula you
found in Problem 2.

(a) Write down the Cauchy data on x = b corresponding to the solution determined
by the formula (1) considered globally valid.

(b) Substitute the functions of t you found in part (a) into your formula from Prob-
lem 2 to get an expression depending only on u0 and v0.

(c) Show the expression you get in part (b) is exactly the d’Alembert formula.

If you can’t do this, then you’ve probably made some kind of error. If it were me, I
would want to find it.

Problem 4 (basic check for v) If you got through Problem 3 above, then you prob-
ably have a (nominally) correct formula for the extension on W+. But let’s imagine
for a moment that you are having trouble completing the basic check, and you think
there may even be a problem with the function you found in Problem 1. Devise a
basic check for the function v you found in Problem 1 based on the same principle(s)
used in Problem 3 and check that your solution of Problem 1 passes this basic check.

Another nice property of my solution (5) is that this function u defined on W−

extends continously to ∂W−∩∂W and agrees with the d’Alembert solution (extended
from W ) across the common boundary. This is called C0 compatibility. To check this
in my case, I consider the points (x, t) = (a+ t, t) and plug x = a+ t into my formula
(5) and the d’Alembert formula (1) to make sure I get the same values.
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Problem 5 (C0 compatibility) Check the C0 compatibility of your extension from
Problem 2 with the d’Alembert formula along the common boundary ∂W ∩ ∂W+.

C1 compatibility does not always hold, and in fact we should not expect it to
always hold, and we should not want it to always hold. Problem 4 from Assignment 7
from MATH 6702 is one example where it cannot hold, and you should understand
why after doing the next problem. I’ll note that this behavior is also somewhat
reminiscent of what we saw for the heat evolution when we imposed upon it a discon-
tinuous forcing. That resulted in a singularity propagating through the flow for all
times and the necessity of a weak solution. But there is a big difference here: That
singularity was actively maintained by singular forcing at every positive time. This
had to be the case because the heat operator is smoothing. Any initial singularity
gets immediately smoothed out. But the wave operator is not smoothing and any
initial singularity tends to naturally get propagated in the wave motion/evolution.

To check C1 compatibility, I again evaluate along my boundary curve ∂W−∩∂W .
First I evaluate

ux
∣

∣

W−

(a + t, t)

using my solution (5). Then I evaluate

ux
∣

∣

W

(a + t, t)

using (1). Setting the two equal, I find the interesting condition for C1 compatibility:

σ−

0 (0)− (u−

0 )
′(0) = u′

0(a)− v0(a). (6)

I can and should check the time derivatives as well evaluating first

ut
∣

∣

W−

(a+ t, t)

using my solution (5) and then
ut
∣

∣

W

(a+ t, t)

using (1). I get the same condition, so I have a theorem.

Theorem 1 (C1 compatibility for the first extension) The formula (5) gives a con-
tinuous extension of the d’Alembert formula to W− which will be a C1 extension if
and only if (6) holds.
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Problem 6 (C1 compatibility for the first extension) Find a C1 compatibility con-
dition like (6) for your first extension obtained in Problem 2 above. Here are some
other good things to do:

(a) Explain the “most natural” circumstances under which this condition holds.

(b) Describe some “more exotic” circumstances under which you get a C1 extension.

The time has come to face a more serious shortcoming of the first extension for-
mula(s). If I evalute my formula on x = a I find

u(a, t) =
1

2
[u0(a) + u0(a + t)] +

1

2

∫

a+t

a

v0(ξ) dξ

+
1

2
[u−

0 (t)− u−

0 (0)]−
1

2

∫

t

0

σ−

0 (η) dη. (7)

If I set this equal to u−

0 (t), I get the condition

u−

0 (t) = u0(a) + u0(a+ t) +

∫

a+t

a

v0(ξ) dξ

− u−

0 (0)−

∫

t

0

σ−

0 (η) dη. (8)

After some reflection I realize I have no reason to believe this condition holds. That
is, I’ve assigned what seemed to be perfectly good Cauchy data along the vertical
line x = a. This gave me a continuous extension which I thought made sense and
I understood. Of course, there was some single point condition (6) to ensure the
extension was C1, but this was not unexpected and made good sense. So I imposed
seemingly perfectly good Cauchy data along x = a, but my solution method may
ignore my zero order Cauchy data or at least fail to realize it. Since the integral
condition on σ0 in (8) is complicated, I will turn to the first order Cauchy data
directly.

Differentiating my formula with respect to x and evaluating at x = a, I find

ux(a, t) =
1

2
u′

0(a+ t) +
1

2
v0(a+ t)

−
1

2
(u−

0 )
′(t) +

1

2
σ−

0 (t). (9)
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Setting this equal to my first order Cauchy data σ−

0 (t) along x = a, I find the more
tractable condition

σ−

0 (t) + (u−

0 )
′(t) = u′

0(a+ t) + v0(a+ t). (10)

Since u′

0 and v0 are given functions, this is relatively easy to interpret: If I attempt
to assign Cauchy data of zero order given by u−

0 (t) along x = a, then the first
order Cauchy data, or the value of σ−

0 (t) = ux(a, t) is not arbitrary but is entirely
determined by the formula

σ−

0 (t) = u′

0(a+ t) + v0(a+ t)− (u−

0 )
′(t). (11)

Problem 7 (compatibility at x = b) Apply the reasoning above to your first exten-
sion from Problem 2.

(a) Find a condition on σ+
0 (t) along x = b corresponding to the prescription (11).

(b) Assuming your condition from part (a) prescribes σ+
0 (t), does your extension

formula give a function satisfying the zero order Cauchy condition

u(b, t) = u+
0 (t)

along x = b? If not, what additional compatibility condition is required/obtained?

Obviously, the second extension is obtained by using the reverse factoring of the
operator, and a series of checks and compatibility conditions should follow up finding
the formula. Since I’ve already composed seven problems above, I’m going to simply
state the formula and leave that out of the problems: If you take the second PDE as
ut + ux = w on W− with wt − wx = 0, then you find

w(x, t) = u′

0(x+ t) + v0(x+ t)

and

ũ(x, t) = u−

0 (0) +
1

2
[u0(x+ t)− u0(2a+ t− x)] +

1

2

∫

x+t

2a+t−x

v0(ξ) dξ.

Again, there are various basic checks one can do with these extensions. Then there
are interesting properties and compatibility conditions, as well as conditions under
which this is the same extension obtained in (5). I have not included these questions
in the problems.
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Part II Divergence Theorem Method(s)

What I’m going to do next is rather simple, and I hope you’ll like it. Again, say I
have a point (x, y) ∈ W− and I wish to find the extension of the d’Alembert solution
on W extending continuously to W− with some prescribed zero order Cauchy data
u−

0 (t) prescribed on the boundary x = a. I consider a rectangle

R =
{

(ξ, τ) ∈ W− : t0 + |ξ − t0| < τ < t− |ξ − t|
}

where (a+t0, t0) is a corner point we have not previously considered. Such a rectangle
is illustrated on the left in Figure 3. We have considered two sides of this rectangle

Figure 3: Integration and the wave equation. A rectangular domain bounded by
characteristic curves (left). The support of a test function crossing the boundary
between W− and W (right).

previously, but I’ve changed the notation slightly because we will be integrating on
the entire rectangle and its boundary. The two parameterizations we have considered
now take the forms

γ1(τ) = (a+ 2t1 − τ, τ) for t1 ≤ τ ≤ t with t1 =
x+ t− a

2

and

γ2(τ) = (a+ τ − t2, τ) for t2 ≤ τ ≤ t with t2 = a + t− x.
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One new path runs along ∂W− ∩ ∂W from (a+ t0, t0) to (a+ t1, t1), that is

γ0(τ) = (a+ τ, τ) for t0 ≤ τ ≤ t1with t0 =
a+ t− x

2
.

and and t1 is given above. The value of t0 satisfies t1 − t0 = t − t2. Finally, the last
new path is given by

γ3(τ) = (a− (t− τ), τ) for t0 ≤ τ ≤ t2.

Let’s use the symbol ∇ to denote the full x, t gradient

∇ =

(

∂

∂x
,
∂

∂t

)

with associated space-time divergence Div so that

�u = −Div(ux,−ut).

Thus, if u solves �u = 0, we can integrate over R and apply the divergence theorem
to see

0 =

∫

R

�u = −

∫

∂R

(ux,−ut) · n (12)

where n is the outward unit normal to ∂R.
Now I will write out the integral over the side Γ1 of ∂R with outward normal

N1 = (1, 1):

∫

Γ1

(ux,−ut) · n1 =

∫

t

t1

[ux(a+ 2t1 − τ, τ)− ut(a+ 2t1 − τ, τ)] dτ

= −

∫

t

t1

d

dτ
u(a+ 2t1 − τ, τ) dτ

= −u(x, t) + u(a+ t1, t1).

Notice one term here involves u(x, t) which is the quantity we are looking to find for
an extension. The other term involves u(a + t1, t1) which we can consider given by
the d’Alembert formula on W .

If you write out the integrals over all four sides of R similar things happen and
you see the divergence theorem applied in (12) is an equation for the desired quantity
u(x, y) in terms of values at the corners of R which are all completely known. Thus,
you can get an extension formula this way.
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Problem 8 (divergence theorem) Apply the divergence theorem to an appropriate
rectangle in W+ to obtain an extension formula for a solution of the wave equation
on W+.

(a) Does the extension formula you find match the extension formula obtained above
by factoring the operator and applying the method of characteristics?

(b) Are there associated compatibility conditions?

We have noted that we cannot always expect an extended solution of the wave
equation to be C1 across the boundary between W− and W (or your boundary be-
tween W and W+).

We say a continuous function u ∈ C0(U1) satisfies �u = 0 weakly on the truncated
wave domain U1 if

∫

u(φtt − φxx) = 0 for every φ ∈ C∞

c (U1). (13)

Let me imagine for a moment that u is a C2 solution in W− which extends the
d’Alembert solution on W continuously. Now say I have a test function φ with
support Ω− ∪ Ω crossing ∂W− ∩ ∂W as indicated on the right in Figure 3. Notice I
can express the integral relation in the weak solution condition (13) as

∫

Ω−

uDiv(φx,−φt) +

∫

Ω

uDiv(φx,−φt) = 0.

Thus, using the product formula for the divergence

Div[u(φx,−φt)] = ∇u · (φx,−φt) + uDiv(φx,−φt)

on each subdomain I obtain
∫

∂Ω−

u(φx,−φt) ·N
− −

∫

Ω−

(ux,−ut) · ∇φ+

∫

∂Ω

u(φx,−φt) ·N−

∫

Ω

(ux,−ut) · ∇φ = 0

where N
− is the unit outward normal to ∂Ω− and N is the unit outward normal to

∂Ω. Now consider the integrals in the sum

∫

∂Ω−

u(φx,−φt) · N
− +

∫

∂Ω

u(φx,−φt) · N. (14)
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Since φ has compact support Ω− ∪Ω, we know φ and all its derivatives vanish on the
portions of ∂Ω− and ∂Ω outside ∂W−∩∂W . That is, the quantity in (14) is given by

∫

∂Ω−∩∂W

u(φx,−φt) · N
− +

∫

∂Ω∩∂W

u(φx,−φt) · N.

But on this portion φ is smooth, u is continuous, and N
− = −N. We conclude that

the quantity in (14) is zero, and
∫

Ω−

(ux,−ut) · ∇φ+

∫

Ω

(ux,−ut) · ∇φ = 0

Now, using the product formula

Div[φ(ux,−ut)] = ∇φ · (ux,−ut) + φDiv(ux,−ut)

= ∇φ · (ux,−ut)− φ�u

my identity further becomes
∫

∂Ω−

[(ux,−ut) · N
−]φ+

∫

∂Ω

[(ux,−ut) · N]φ = 0.

Again, shedding the portions of boundary where φ vanishes and using the relation
N

− = N on the remainder we conclude
∫

∂Ω∩∂W

[(

ux
∣

∣

W

,−ut
∣

∣

W

)

−

(

ux
∣

∣

W−

,−ut
∣

∣

W−

)]

· N φ = 0.

Finally, since N = (−1, 1) we conclude from the fundamental lemma of vanishing
integrals that

(ux − ut)∣
∣

W

(a+ t, t) = (ux − ut)∣
∣

W−

(a+ t, t) (15)

for 0 < t < (b − a)/2 is a necessary condition for a C0 weak solution of the wave
equation along ∂W− ∩ ∂W .

The derivatives in this condition can now be written in terms of the extension
formulas given above (on the W− side) and the d’Alembert formula (on the W side).

Problem 9 (Interior C0 weak solutions of the 1-D wave equation) Find the corre-
sponding necessary condition for a C0 weak solution across the line segment ∂W ∩
∂W+, and determine if your extension formulas from Problems 2 and 8 satisfy this
condition.

16



Part III Extension of the Cauchy data u0 and v0

If I assume u0 and v0 are extended so that the boundary value u−

0 (t) is given by
the global d’Alembert solution along x = a with 0 < t < b− a, that is

1

2
[u0(a− t) + u0(a + t)] +

1

2

∫

x+t

a−t

v0(ξ) dξ = u−

0 (t)

and I also assume the compatibility condition (11) and the continuity condition

u0(a) = u−

0 (0)

so that the zero order Cauchy data is achieved by my extension (5), then I also have

u−

0 (t) =
1

2
[u0(a) + u0(a+ t)] +

1

2

∫

a+t

a

v0(ξ) dξ

+
1

2
[u−

0 (t)− u−

0 (0)]−
1

2

∫

t

0

σ−

0 (η) dη. (16)

Equating these expressions and simplifying, I obtain a condition on the extension:

u0(x− t) +

∫ 0

x−t

v0(ξ) dξ = −u0(−(x− t))−

∫

−(x−t)

0

v0(ξ) dξ.

Again, this is nominally a little complicated but somewhat suggestive if you think
about it. In particular, differentiating we get

u′

0(x− t)− v0(x− t) = u′

0(−(x− t)) + v0(−(x− t)).

These formulas should suggest to you an obvious choice for the extension so that
the solution on the truncated wave domain for a finite interval is given by a global
d’Alembert solution, at least in some special cases.

Problem 10 (extension/reflection) Apply the discussion above to the special case in
which a = 0, b = ℓ > 0, u−

0 (t) ≡ 0, u+
0 ≡ 0, v0(x) ≡ 0 and

u0(x) = c
ℓ

2
− c

∣

∣

∣

∣

x−
ℓ

2

∣

∣

∣

∣

for some c > 0 and 0 < x < ℓ. What do you find for the extension of u0 and v0?
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