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1 Hanging Chain

A standard problem presented in courses on the classical mathematical methods of engineering is that of
finding the fundamental modes of the small oscillations of a hanging chain. The wave equation in the form

ρutt = (Tux)x

is used where ρ > 0 (assumed constant) models the linear density of a hanging chain of length L, the
function T : [0, L] → (0,∞) models the tension due to gravity along the chain, and u measures the
horizontal transverse displacement. The tension at each point, furthermore, is assumed to be given by

T (x) = ρg(L− x)

where g is a gravitational acceleration constant and ρ(L − x) is the mass of the portion of chain “below”
x, though we have chosen coordinates so that positive increasing x corresponds to “downward.” It is also
usually assumed that the “top” point is fixed corresponding to the boundary condition

u(0, t) = 0.

An alternative is, of course, to take z on the interval [−L, 0] so that the tension becomes T (z) = ρg(L+z)
and the PDE is

utt = g[(z + L)uz]z.

Expanding our equation in x, we get

utt = g[(L− x)ux]x = g(L− x)uxx − gux.

It will be noted immediately that the equation is spatially singular at x = L where the coefficient of the
leading order term uxx vanishes. It is customary to choose coordinates

ξ = L− x, U(ξ, t) = u(L− ξ, t)

so that this singularity occurs at the left endpoint ξ = 0 of the interval [0, L]. The boundary value problem
then becomes

{

Utt = gξUξξ + gUξ, on (0, L)× (0,∞)
U(L, t) = 0, t > 0.

(1)

Exercise 1 Start with u = u(z, t) on [−L, 0] × [0,∞) and change variables to obtain the appropriate

boundary value problem starting with vertical coordinates. Hint: You still want a singular PDE with

singular point at the left endpoint ζ = 0 on [0, L].
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Separation of variables in (1) with U = A(ξ)B(t) gives

AB′′ = gξA′′B + gA′B = 0 or
B′′

B
= g

ξA′′ + A′

A
= −λ = −µ2.

We anticipate here in the B problem obtaining separated variables solutions with regular oscillation de-
termined by

B(t) = a cosµt+ b sin µt

though we have no boundary conditions to justify this anticipation. For the A problem we have at least
one boundary condition:

{

ξA′′ + A′ + µ2A/g = 0, on [0,L]
A(L) = 0.

We may add the implied and physically reasonable requirement that A(0) is finite at the singular point
ξ = 0. It may not be immediately obvious what to do with an ODE like this one, but here is one approach
(the one that is usually presented): Write the ODE as

A′′ +
1

ξ
A′ +

µ2

gξ
A = 0 (2)

and compare to the standard Bessel equation of order ν

y′′ +
1

x
y′ +

(

1− ν2

x2

)

y = 0. (3)

The two equations are not immediately comparable, but there is a standard procedure which we now
describe/present according to which a connection can be made. We consider the function

f(ξ) = ξpy(aξq)

for arbitrary exponents p and q and an arbitrary coefficent a (all constant) with, of course, y a solution of
the Bessel equation (3). Notice that

f ′ = aqξp+q−1 y′ + pξp−1 y = ξp−1 [aqξq y′ + p y] . (4)

Differentiating again we have

f ′′ = a2q2ξp+2q−2 y′′ +
[

aq(p+ q − 1)ξp+q−2 + apqξp+q−2
]

y′ + p(p− 1)ξp−2y

= a2q2ξp+2q−2 y′′ + aq(2p+ q − 1)ξp+q−2 y′ + p(p− 1)ξp−2 y

= ξp−2
[

a2q2ξ2qy′′ + aq(2p+ q − 1)ξq y′ + p(p− 1)y
]

. (5)

Putting x = aξq in the Bessel equation (3) we can write

y′′ = − 1

aξq
y′ −

(

1− ν2

a2ξ2q

)

y

or
a2q2ξ2q y′′ = −aq2ξq y′ − q2

(

a2ξ2q − ν2
)

y.

Making this substitution in (5) we have

f ′′ = ξp−2
[

aq(2p− 1)ξq y′ +
[

p(p− 1) + q2ν2 − a2q2ξ2q
]

y
]

We also know from (4) that

aqξp+q−1 y′ = f ′ − pξp−1 y = f ′ − p

ξ
f
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since ξpy = f or

aq(2p− 1)ξq y′ =
2p− 1

ξp−1
f ′ − p(2p− 1) y.

Therefore,

f ′′ = ξp−2

[

2p− 1

ξp−1
f ′ − p(2p− 1) y +

[

p(p− 1) + q2ν2 − a2q2ξ2q
]

y

]

= ξp−2

[

2p− 1

ξp−1
f ′ +

[

q2ν2 − p2 − a2q2ξ2q
]

y

]

=
2p− 1

ξ
f ′ +

(

q2ν2 − p2

ξ2
− a2q2ξ2q−2

)

f.

Finally then we have obtained a somewhat different ODE (or family of ODEs depending on the real
parameters a, p, and q) also sometimes called Bessel ODEs:

f ′′ +
1− 2p

ξ
f ′ +

(

p2 − q2ν2

ξ2
+ a2q2ξ2q−2

)

f = 0.

Let us compare this ODE to our original hanging chain ODE (2)

A′′ +
1

ξ
A′ +

µ2

gξ
A = 0.

If 1 − 2p = 1 or p = 0, then the order one coefficients agree. We need then to arrange for the zero order
coefficent that

a2q2ξ2q−2 − q2ν2

ξ2
=

µ2

gξ
.

For this we must have 2q − 2 = −1 or q = 1/2 and ν = 0. Finally, we need

a2q2 =
a2

4
=

µ2

g

or a = 2µ/
√
g.

Thus, if y is a solution of the Bessel equation of order ν = 0, then

f(ξ) = y

(

2µ
√
g

√

ξ

)

is a solution of the separated variables equation (2) for A. We know furthermore that
√
ξ tends to zero as

ξ ց 0, but the standard Bessel function Y0 (of order zero of the second kind) tends to −∞ logarithmically.
In particular,

ln
√

ξ =
1

2
ln ξ ց −∞ as ξ ց 0.

We conclude that we should use a multiple of J0, the Bessel function of order zero of the first kind for y.
Thus, we consider solutions of the ODE

A(ξ) = J0

(

2µ
√
g

√

ξ

)

.

Finally, we need A(L) = 0 for the other boundary condition which means

2µ

√

L

g
= Z0j
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must be a zero of J0. This (finally) tells us our eigenvalues λ = µ2:

µj =
Z0j

2

√

g

L

where Z0j is the j-th positive zero of J0. In terms of the original variables we can write

Uj(ξ, t) = cos

(

Z0jt

2

√

g

L

)

J0

(

Z0j

√

ξ

L

)

and

u(x, t) = cos

(

Z0jt

2

√

g

L

)

J0

(

Z0j

√

1− x

L

)

.

2 A Second Approach

In order to adapt the analysis above to the case of a hanging slinky the main obstacle is, first of all, that
there is no change of variable to reduce the problem to some standard ODE. As a consequence, probably
the most expedient approach is to solve (or attempt to approximate solutions of) the ODE numerically.
One can obtain a good deal of intuition from the problem above. For this reason, let us reconsider the
problem above without the use of the Bessel function J0. If we didn’t know about that, what would we
do?

Accordingly, we return to the equation (2)

A′′ +
1

ξ
A′ +

µ2

gξ
A = 0

and consider it directly as a Sturm-Liouville type equation on the interval [0, L] with a singularity at ξ = 0.
We already know there is a solution of this equation which is finite valued at ξ = 0. Also, (2) is a linear
equation, so given any solution A the scaled function cA is also a solution. This means we can essentially
find out everything about the solutions which are finite at ξ = 0 by considering only solutions with, for
example, A(0) = 1. Of course, we can’t numerically solve this ODe starting with ξ = 0 and A(0) = 1
because the equation is singular; the coefficients are not well-defined at ξ = 0. On the other hand, we
could guess (and also check) that the derivative A′(0) for the solution with A(0) = 1 is also well-defined
and finite.

You may remember or observe that J ′

0(0) = 0, but

d

dξ
J0(
√

ξ) =
J ′

0(
√
ξ)

2
√
ξ

= −J1(
√
ξ)

2
√
ξ

. (6)

The identity J ′

0 = −J1 is a little bit like (d/dθ) cos θ = − sin θ. On the other hand, J1(0) = 0, so the
expression in (6) is an indeterminate form. In fact, J ′

1(0) = [J0(0)−J2(0)]/2 = 1/2, so the value of A′(0) is
finite and nonzero. The point of this discussion is to suggest there is something special about A′(0). You
can’t just specify that value arbitrarily due to the singularity. And you can see this numerically. If you
start relatively close to the singularity ξ = 0, say at ξ = 0.001 and solve the ODE (2) numerically down
to ξ = 0.00000001 subject to the initial conditions A(0.001) = 1 and A′(0.001) = p takes various values,
you will find that for some values of p the value you get A(0.00000001) is very large and positive—much
greater than 1. For other values of p the value you get A(0.00000001) is very large and negative. there is
a narrow range for p in which you can get A(0.00000001) close to 1. This suggests, and in fact it is true,
that there is only one value A′(0) = p for which (2) has a solution with A(0) = 1.
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