Small Transverse Oscillations of Hanging Chain and Hanging Slinky Bessel Functions

John McCuan

November 22, 2021

1 Hanging Chain

A standard problem presented in courses on the classical mathematical methods of engineering is that of finding the fundamental modes of the small oscillations of a hanging chain. The wave equation in the form

$$
\rho u_{t t}=\left(T u_{x}\right)_{x}
$$

is used where $\rho>0$ (assumed constant) models the linear density of a hanging chain of length L, the function $T:[0, L] \rightarrow(0, \infty)$ models the tension due to gravity along the chain, and u measures the horizontal transverse displacement. The tension at each point, furthermore, is assumed to be given by

$$
T(x)=\rho g(L-x)
$$

where g is a gravitational acceleration constant and $\rho(L-x)$ is the mass of the portion of chain "below" x, though we have chosen coordinates so that positive increasing x corresponds to "downward." It is also usually assumed that the "top" point is fixed corresponding to the boundary condition

$$
u(0, t)=0
$$

An alternative is, of course, to take z on the interval $[-L, 0]$ so that the tension becomes $T(z)=\rho g(L+z)$ and the PDE is

$$
u_{t t}=g\left[(z+L) u_{z}\right]_{z}
$$

Expanding our equation in x, we get

$$
u_{t t}=g\left[(L-x) u_{x}\right]_{x}=g(L-x) u_{x x}-g u_{x} .
$$

It will be noted immediately that the equation is spatially singular at $x=L$ where the coefficient of the leading order term $u_{x x}$ vanishes. It is customary to choose coordinates

$$
\xi=L-x, \quad U(\xi, t)=u(L-\xi, t)
$$

so that this singularity occurs at the left endpoint $\xi=0$ of the interval $[0, L]$. The boundary value problem then becomes

$$
\begin{cases}U_{t t}=g \xi U_{\xi \xi}+g U_{\xi}, & \text { on }(0, L) \times(0, \infty) \tag{1}\\ U(L, t)=0, & t>0\end{cases}
$$

Exercise 1 Start with $u=u(z, t)$ on $[-L, 0] \times[0, \infty)$ and change variables to obtain the appropriate boundary value problem starting with vertical coordinates. Hint: You still want a singular PDE with singular point at the left endpoint $\zeta=0$ on $[0, L]$.

Separation of variables in (1) with $U=A(\xi) B(t)$ gives

$$
A B^{\prime \prime}=g \xi A^{\prime \prime} B+g A^{\prime} B=0 \quad \text { or } \quad \frac{B^{\prime \prime}}{B}=g \frac{\xi A^{\prime \prime}+A^{\prime}}{A}=-\lambda=-\mu^{2}
$$

We anticipate here in the B problem obtaining separated variables solutions with regular oscillation determined by

$$
B(t)=a \cos \mu t+b \sin \mu t
$$

though we have no boundary conditions to justify this anticipation. For the A problem we have at least one boundary condition:

$$
\left\{\begin{array}{l}
\xi A^{\prime \prime}+A^{\prime}+\mu^{2} A / g=0, \text { on }[0, \mathrm{~L}] \\
A(L)=0 .
\end{array}\right.
$$

We may add the implied and physically reasonable requirement that $A(0)$ is finite at the singular point $\xi=0$. It may not be immediately obvious what to do with an ODE like this one, but here is one approach (the one that is usually presented): Write the ODE as

$$
\begin{equation*}
A^{\prime \prime}+\frac{1}{\xi} A^{\prime}+\frac{\mu^{2}}{g \xi} A=0 \tag{2}
\end{equation*}
$$

and compare to the standard Bessel equation of order ν

$$
\begin{equation*}
y^{\prime \prime}+\frac{1}{x} y^{\prime}+\left(1-\frac{\nu^{2}}{x^{2}}\right) y=0 . \tag{3}
\end{equation*}
$$

The two equations are not immediately comparable, but there is a standard procedure which we now describe/present according to which a connection can be made. We consider the function

$$
f(\xi)=\xi^{p} y\left(a \xi^{q}\right)
$$

for arbitrary exponents p and q and an arbitrary coefficent a (all constant) with, of course, y a solution of the Bessel equation (3). Notice that

$$
\begin{equation*}
f^{\prime}=a q \xi^{p+q-1} y^{\prime}+p \xi^{p-1} y=\xi^{p-1}\left[a q \xi^{q} y^{\prime}+p y\right] \tag{4}
\end{equation*}
$$

Differentiating again we have

$$
\begin{align*}
f^{\prime \prime} & =a^{2} q^{2} \xi^{p+2 q-2} y^{\prime \prime}+\left[a q(p+q-1) \xi^{p+q-2}+a p q \xi^{p+q-2}\right] y^{\prime}+p(p-1) \xi^{p-2} y \\
& =a^{2} q^{2} \xi^{p+2 q-2} y^{\prime \prime}+a q(2 p+q-1) \xi^{p+q-2} y^{\prime}+p(p-1) \xi^{p-2} y \\
& =\xi^{p-2}\left[a^{2} q^{2} \xi^{2 q} y^{\prime \prime}+a q(2 p+q-1) \xi^{q} y^{\prime}+p(p-1) y\right] . \tag{5}
\end{align*}
$$

Putting $x=a \xi^{q}$ in the Bessel equation (3) we can write

$$
y^{\prime \prime}=-\frac{1}{a \xi^{q}} y^{\prime}-\left(1-\frac{\nu^{2}}{a^{2} \xi^{2 q}}\right) y
$$

or

$$
a^{2} q^{2} \xi^{2 q} y^{\prime \prime}=-a q^{2} \xi^{q} y^{\prime}-q^{2}\left(a^{2} \xi^{2 q}-\nu^{2}\right) y .
$$

Making this substitution in (5) we have

$$
f^{\prime \prime}=\xi^{p-2}\left[a q(2 p-1) \xi^{q} y^{\prime}+\left[p(p-1)+q^{2} \nu^{2}-a^{2} q^{2} \xi^{2 q}\right] y\right]
$$

We also know from (4) that

$$
a q \xi^{p+q-1} y^{\prime}=f^{\prime}-p \xi^{p-1} y=f^{\prime}-\frac{p}{\xi} f
$$

since $\xi^{p} y=f$ or

$$
a q(2 p-1) \xi^{q} y^{\prime}=\frac{2 p-1}{\xi^{p-1}} f^{\prime}-p(2 p-1) y
$$

Therefore,

$$
\begin{aligned}
f^{\prime \prime} & =\xi^{p-2}\left[\frac{2 p-1}{\xi^{p-1}} f^{\prime}-p(2 p-1) y+\left[p(p-1)+q^{2} \nu^{2}-a^{2} q^{2} \xi^{2 q}\right] y\right] \\
& =\xi^{p-2}\left[\frac{2 p-1}{\xi^{p-1}} f^{\prime}+\left[q^{2} \nu^{2}-p^{2}-a^{2} q^{2} \xi^{2 q}\right] y\right] \\
& =\frac{2 p-1}{\xi} f^{\prime}+\left(\frac{q^{2} \nu^{2}-p^{2}}{\xi^{2}}-a^{2} q^{2} \xi^{2 q-2}\right) f .
\end{aligned}
$$

Finally then we have obtained a somewhat different ODE (or family of ODEs depending on the real parameters a, p, and q) also sometimes called Bessel ODEs:

$$
f^{\prime \prime}+\frac{1-2 p}{\xi} f^{\prime}+\left(\frac{p^{2}-q^{2} \nu^{2}}{\xi^{2}}+a^{2} q^{2} \xi^{2 q-2}\right) f=0
$$

Let us compare this ODE to our original hanging chain ODE (2)

$$
A^{\prime \prime}+\frac{1}{\xi} A^{\prime}+\frac{\mu^{2}}{g \xi} A=0
$$

If $1-2 p=1$ or $p=0$, then the order one coefficients agree. We need then to arrange for the zero order coefficent that

$$
a^{2} q^{2} \xi^{2 q-2}-\frac{q^{2} \nu^{2}}{\xi^{2}}=\frac{\mu^{2}}{g \xi}
$$

For this we must have $2 q-2=-1$ or $q=1 / 2$ and $\nu=0$. Finally, we need

$$
a^{2} q^{2}=\frac{a^{2}}{4}=\frac{\mu^{2}}{g}
$$

or $a=2 \mu / \sqrt{g}$.
Thus, if y is a solution of the Bessel equation of order $\nu=0$, then

$$
f(\xi)=y\left(\frac{2 \mu}{\sqrt{g}} \sqrt{\xi}\right)
$$

is a solution of the separated variables equation (2) for A. We know furthermore that $\sqrt{\xi}$ tends to zero as $\xi \searrow 0$, but the standard Bessel function Y_{0} (of order zero of the second kind) tends to $-\infty$ logarithmically. In particular,

$$
\ln \sqrt{\xi}=\frac{1}{2} \ln \xi \searrow-\infty \quad \text { as } \xi \searrow 0
$$

We conclude that we should use a multiple of J_{0}, the Bessel function of order zero of the first kind for y. Thus, we consider solutions of the ODE

$$
A(\xi)=J_{0}\left(\frac{2 \mu}{\sqrt{g}} \sqrt{\xi}\right)
$$

Finally, we need $A(L)=0$ for the other boundary condition which means

$$
2 \mu \sqrt{\frac{L}{g}}=Z_{0 j}
$$

must be a zero of J_{0}. This (finally) tells us our eigenvalues $\lambda=\mu^{2}$:

$$
\mu_{j}=\frac{Z_{0 j}}{2} \sqrt{\frac{g}{L}}
$$

where $Z_{0 j}$ is the j-th positive zero of J_{0}. In terms of the original variables we can write

$$
U_{j}(\xi, t)=\cos \left(\frac{Z_{0 j} t}{2} \sqrt{\frac{g}{L}}\right) J_{0}\left(Z_{0 j} \sqrt{\frac{\xi}{L}}\right)
$$

and

$$
u(x, t)=\cos \left(\frac{Z_{0 j} t}{2} \sqrt{\frac{g}{L}}\right) J_{0}\left(Z_{0 j} \sqrt{1-\frac{x}{L}}\right) .
$$

2 A Second Approach

In order to adapt the analysis above to the case of a hanging slinky the main obstacle is, first of all, that there is no change of variable to reduce the problem to some standard ODE. As a consequence, probably the most expedient approach is to solve (or attempt to approximate solutions of) the ODE numerically. One can obtain a good deal of intuition from the problem above. For this reason, let us reconsider the problem above without the use of the Bessel function J_{0}. If we didn't know about that, what would we do?

Accordingly, we return to the equation (2)

$$
A^{\prime \prime}+\frac{1}{\xi} A^{\prime}+\frac{\mu^{2}}{g \xi} A=0
$$

and consider it directly as a Sturm-Liouville type equation on the interval $[0, L]$ with a singularity at $\xi=0$. We already know there is a solution of this equation which is finite valued at $\xi=0$. Also, (2) is a linear equation, so given any solution A the scaled function $c A$ is also a solution. This means we can essentially find out everything about the solutions which are finite at $\xi=0$ by considering only solutions with, for example, $A(0)=1$. Of course, we can't numerically solve this ODe starting with $\xi=0$ and $A(0)=1$ because the equation is singular; the coefficients are not well-defined at $\xi=0$. On the other hand, we could guess (and also check) that the derivative $A^{\prime}(0)$ for the solution with $A(0)=1$ is also well-defined and finite.

You may remember or observe that $J_{0}^{\prime}(0)=0$, but

$$
\begin{equation*}
\frac{d}{d \xi} J_{0}(\sqrt{\xi})=\frac{J_{0}^{\prime}(\sqrt{\xi})}{2 \sqrt{\xi}}=-\frac{J_{1}(\sqrt{\xi})}{2 \sqrt{\xi}} . \tag{6}
\end{equation*}
$$

The identity $J_{0}^{\prime}=-J_{1}$ is a little bit like $(d / d \theta) \cos \theta=-\sin \theta$. On the other hand, $J_{1}(0)=0$, so the expression in (6) is an indeterminate form. In fact, $J_{1}^{\prime}(0)=\left[J_{0}(0)-J_{2}(0)\right] / 2=1 / 2$, so the value of $A^{\prime}(0)$ is finite and nonzero. The point of this discussion is to suggest there is something special about $A^{\prime}(0)$. You can't just specify that value arbitrarily due to the singularity. And you can see this numerically. If you start relatively close to the singularity $\xi=0$, say at $\xi=0.001$ and solve the ODE (2) numerically down to $\xi=0.00000001$ subject to the initial conditions $A(0.001)=1$ and $A^{\prime}(0.001)=p$ takes various values, you will find that for some values of p the value you get $A(0.00000001)$ is very large and positive - much greater than 1 . For other values of p the value you get $A(0.00000001)$ is very large and negative. there is a narrow range for p in which you can get $A(0.00000001)$ close to 1 . This suggests, and in fact it is true, that there is only one value $A^{\prime}(0)=p$ for which (2) has a solution with $A(0)=1$.

