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We have now complex integration along a curve denoted by
∫

α

f. (1)

There are two essential elements in such an integral: The curve and the function. The
curve is assumed to be parameterized by a function α : [a, b] → C on a real interval,
to be at least piecewise regular, and to have image Γ ⊂ C. The function f : Γ → C

is assumed to be continuous. Recall then, that the value of the integral (1) is given
by (the hybrid integral)

∫ b

a

f ◦ α(t) α′(t) dt.

We introduce here a natural broader context in which to consider complex inte-
gration. Namely, let us assume f : Ω → C is a complex valued function defined on
an open set Ω ⊂ C. We will consider curves α : [a, b] → Γ ⊂ Ω, but restrict attention
to closed curves, that is, curves for which α(b) = α(a).

Thus, we may think of three essential elements in relation to the complex integral
(1) over a closed curve:

(i) The curve,

(ii) The function, and

(iii) The domain Ω.

Let us call a result a “Cauchy type theorem” if the conclusion is
∫

α

f = 0.
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This conclusion may hold either for a specific closed curve or a class of closed curves, a
specific domain or a class of domains, and/or a specific function or a class of functions.
We know one such theorem already which is an important one:

Theorem 1 (Existence of a primitive; Corollary 2 in my notes on integration or
Corollary 3.3 in S&S) If f : Ω → C is holomorphic and there exists a function
g : Ω → C holomorphic with

g′ = f on Ω,

then
∫

α

f = 0

for any closed curve α : [a, b] → Ω.

Note that in this theorem, the function may be viewed as quite special, but the
domain and the curve can essentially be anything.

The next result of Cauchy type is quite different. Essentially the domain and the
curve are very special, but the result applies to many functions.

Theorem 2 (Goursat’s theorem) If f : Ω → C is complex differentiable and U is a
triangular domain with boundary a triangle

T = ∂U with T ∪ U = U ⊂ Ω,

then
∫

α

f = 0

where α : [a, b] → T is a parameterization of the triangle T = ∂U .

We will combine these two results to get the next result:

Theorem 3 (Cauchy’s theorem in a triangle) If Ω = U is a triangular domain and
f : Ω → C is holomorphic, then

∫

α

f = 0

for any closed curve α : [a, b] → Ω.

In this result one sees many of the main features of what is considered Cauchy’s
theorem.1

1. . . rather than just a “Cauchy type theorem.”
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Theorem 4 (Cauchy’s theorem in a rectangle) If Ω = R is a rectangular domain
and f : Ω → C is holomorphic, then

∫

α

f = 0

for any closed curve α : [a, b] → Ω.

Theorem 5 (Cauchy’s theorem in a disk) If Ω = Dr(z0) is a disk domain and f :
Ω → C is holomorphic, then

∫

α

f = 0

for any closed curve α : [a, b] → Ω.

There are more general versions, but these are a good start. Let us prove Goursat’s
theorem and Cauchy’s theorem in a triangle.

Proof of Goursat’s theorem: Every triangular domain U can be partitioned into
four “half size” similar triangular subdomains

U1,U2,U3,U4

with the vertices/corners of the subdomains either the midpoints of the sides of T =
∂U or the vertices of T . Note that all the linear dimensions of each of the triangular
domains is half that of the original triangular domain. In particular, if Tj = ∂Uj for
j = 1, 2, 3, 4, then

length(Tj) =
1

2
length(T ).

Furthermore, if αj is a (counterclockwise) parameterization of Tj for j = 1, 2, 3, 4,
then

∫

α

f =

4
∑

j=1

∫

αj

f.

This gives
∣

∣

∣

∣

∫

α

f

∣

∣

∣

∣

≤
4

∑

j=1

∣

∣

∣

∣

∣

∫

αj

f

∣

∣

∣

∣

∣

≤ 4max
j

∣

∣

∣

∣

∣

∫

αj

f

∣

∣

∣

∣

∣

.
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Let U (1) with T (1) = ∂U (1) parameterized by α(1) be a/the triangular domain among
U1, U2, U3, and U4 satisfying

∣

∣

∣

∣

∫

α(1)

f

∣

∣

∣

∣

= max
j

∣

∣

∣

∣

∣

∫

αj

f

∣

∣

∣

∣

∣

.

Applying the same construction to U (1), its successor U (2) and so on, we obtain a
sequence of nested triangular domains

U (1) ⊃ U (2) ⊂ U (3) ⊃ · · ·

with boundaries T (m) = ∂U (m) parameterized by α(m) for m = 1, 2, 3, . . . and for
which for which

∣

∣

∣

∣

∫

α

f

∣

∣

∣

∣

≤ 4m
∣

∣

∣

∣

∫

α(m)

f

∣

∣

∣

∣

.

and

length(T (m)) ≤ 1

2m
length(T ).

Notice that the closures
U (1) ⊃ U (2) ⊃ U (3) ⊃ · · ·

are a sequence of nonempty nested compact sets. Consequently,

∞
⋂

m=1

U (m) = {z0}

for some unique z0 ∈ U ⊂ Ω.
Since f is complex differentiable at z0 we have an approximation formula we can

apply (or at least can try to apply) to estimate

∫

α(m)

f.

This approximation formula can be written as

f(z) = f(z0) + f ′(z0) (z − z0) + ◦(|z − z0|). (2)

Let g0 denote the global primitive for the constant function f(z0). That is, g0(z) =
f(z0)z and

g′0 = f(z0).
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Similarly, let g1(z) = f ′(z0)(z − z0)
2/2 so that

g′1 = f ′(z0) (z − z0).

Using the existence of these primitives we can integrate the approximation formula
(2) to get

∫

α(m)

f =

∫

α(m)

◦(|z − z0|). (3)

This may look a little unsettling and unfamiliar with an integral of a “little O”
function like this; in principle there is no reason to believe a “little O” function is
continuous or that this integral makes sense. Just bear with me a moment, and I’ll
come back and “fix it up” later. For now, let’s estimate as follows:

∣

∣

∣

∣

∫

α

f

∣

∣

∣

∣

≤ 4m
∣

∣

∣

∣

∫

α(m)

f

∣

∣

∣

∣

≤ 4m max ◦(|z − z0|) length(T (m))

= 4m
max ◦(|z − z0|)

|z − z0|
|z − z0|

1

2m
length(T )

= 2m
max ◦(|z − z0|)

|z − z0|
|z − z0| length(T ).

Note that

|z − z0| ≤ diam(U (m)) =
1

2m
diam(U).

Therefore,
∣

∣

∣

∣

∫

α

f

∣

∣

∣

∣

≤ max ◦(|z − z0|)
|z − z0|

diam(U) length(T ) → 0

as mր ∞ so that |z − z0| → 0. If this argument is correct, it shows
∫

α

f = 0

and we are done. Stein makes the argument look a little more palatable by writing
our function ◦(|z − z0|) as

◦(|z − z0|) = ψ(z)(z − z0) (4)

for some function ψ with
lim
z→z0

ψ(z) = 0.
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Notice that saying

lim
z→z0

◦(|z − z0|)
|z − z0|

= 0

is precisely the same as saying

lim
z→z0

ψ(z)|z − z0|
|z − z0|

= 0

when (4) holds. But it makes the argument/estimates look rather better:

∣

∣

∣

∣

∫

α

f

∣

∣

∣

∣

≤ 4m
∣

∣

∣

∣

∫

α(m)

f

∣

∣

∣

∣

≤ 4m max[|ψ(z)||z − z0|] length(T (m))

≤ 4m max |ψ(z)| diam(U (m))
1

2m
length(T )

≤ 2m max |ψ(z)| 1

2m
diam(U) length(T )

≤ max |ψ(z)| diam(U) length(T ) → 0 as z → z0.

This looks better, but still we have skipped the objectionable step where we first
estimate the integral of f using ψ. That is, before we start the string of estimates
above we should write a version of (3) that looks like

∫

α(m)

f =

∫

α(m)

ψ(z)|z − z0|.

Again, it looks good (or at least better), but the fact of the matter is that generally
the definition of “little O” says nothing about the function ψ being continuous and
hence integrable (along a curve). In this case, however, we are okay. In fact, in the
definition of differentiability the function ◦(|z − z0|) = ψ(z)(z − z0) is not just any
function. In this case, we have

ψ(z) =
f(z)− f(z0)− f ′(z0)(z − z0)

z − z0
,

and this specific function is continuous for z 6= z0 and hence integrable. (And it
has the property that ψ(z) → 0 as z → z0.) So the proof above turns out to be just
fine. �
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Corollary 1 (Quadrilateral Goursat theorem) If f : Ω → C is complex differentiable
and V is a connected quadrilateral domain with boundary a quadrilateral

Q = ∂V with Q ∪ V = V ⊂ Ω,

then
∫

α

f = 0

where α : [a, b] → Q is a parameterization of the quadrilateral Q = ∂V.

Exercise 1 Prove the quadrilateral Goursat theorem by noting that any quadrilateral
domain is a union of triangular domains.

Let’s now use Goursat’s theorem to prove Cauchy’s theorem for a triangular do-
main.
Proof of Theorem 3: We start with a curve Γ, a closed curve within a triangular
domain U . Presumably, Γ is parameterized in some way, but this is not important
for us because we are going to use Theorem 1. That is, we will show the existence
of a primitive for the holomorphic function f : U → C on a triangular domain.
Technically, we will not immediately obtain a primitive for f on all of U , but this is
only a technical detail. The point is that all integrals

∫

α

f

over closed curves like Γ must vanish if we can verify the existence of a primitive.
To this end, we note that Γ is a compact subset of the open triangular domain U .

Consequently, we can take a dilation U1 giving a similar triangular domain slightly
smaller than U for which

Γ ⊂ U1 ⊂ U1 ⊂ U .
Let the vertices of T1 = ∂U1 be a, b, and c in counterclockwise order and let us
denote the opposite sides of the triangle T1 by A, B, and C with A opposite a and B
opposite b. Notice that for each z ∈ U1, there is a unique segment parallel to the side
A opposite a connecting z to a point ζ ∈ T1 on the side C between a and b. Thus, for
each z ∈ U1, there is a unique path consisting of the segment γ1 from a to the point
ζ ∈ C and the segment α1 from ζ to z. Thus, a unique complex valued function is
defined on U1 by

g(z) =

∫

γ1

f +

∫

α1

f.
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We claim g : U1 → C is holomorphic with g′ = f . That is, g is a primitive for f on
U1.

Let h ∈ C have |h| small enough so that z + h ∈ U1. Then the value g(z + h) is
computed using segments γ2 in C from a to a point ζ2 and a segment α2 from ζ2 to
z.

Letting γ0 denote the segment from ζ to ζ2 we can write

g(z + h)− g(z) =

∫

γ2

f +

∫

α2

f −
∫

γ

f −
∫

α

f =

∫

γ0

f +

∫

α2

f −
∫

α

f.

If we add the integral
∫

δ

f

where δ is the segment from z + h to z we obtain

g(z + h)− g(z) +

∫

δ

f =

∫

γ0

f +

∫

α2

f +

∫

δ

f −
∫

α

f.

Notice the concatenation of γ0, α2, δ, and −α on the right is an oriented quadrilateral
path around a connected domain from ζ to ζ2 to z + h to z and back to ζ . By the
quadrilateral Goursat theorem we have

g(z + h)− g(z) = −
∫

δ

f.

That is, g(z + h)− g(z) is the integral of f over the segment from z to z + h. Using
the differentiability of f at z to approximate this integral we have

f(w) = f(z) + f ′(z)(w − z) + ψ(w)(w − z)

where ψ is a continuous function of w for which

lim
w→z

ψ(w) = 0.

We have a primitive g0(w) = f(z)w for the first term so that

−
∫

δ

f =

∫

−δ

[g′0 + f ′(z)(w − z) + ψ(w)(w − z)]

= g0(z + h)− g0(z) +

∫

−δ

f ′(z)(w − z) +

∫

−δ

ψ(w)(w − z)

= f(z)h+

∫

−δ

f ′(z)(w − z) +

∫

−δ

ψ(w)(w − z).

8



Therefore,

g(z + h)− g(z)

h
= f(z) +

1

h

∫

−δ

f ′(z)(w − z) +
1

h

∫

−δ

ψ(w)(w − z).

Estimating the last two terms we find

∣

∣

∣

∣

1

h

∫

−δ

f ′(z)(w − z)

∣

∣

∣

∣

≤ |f ′(z)||h| → 0

and
∣

∣

∣

∣

1

h

∫

−δ

ψ(w)(w − z)

∣

∣

∣

∣

≤ max |ψ||h| → 0

as h→ 0. That is, g′ = f . �

1 Under the Rug Part I

We have given proofs of Goursat’s theorem (for triangular subdomains) and Cauchy’s
theorem in a triangle. Hopefully these proofs have been tolerably convincing. We
have followed the exposition of Stein for the most part with a couple exceptions. One
exception is that we stated (and proved) Cauchy’s theorem in a triangle rather than a
disk. I think there is a tangible advantage to the approach I have taken in this regard.
The proof of Cauchy’s theorem in this case is basically about creating a primitive g by
integrating along particular simple paths that can be “resolved” in terms of triangular
paths. Stein’s proof, similar to Ahlfors’ in a disk depends on paths starting at the
center z0 and consisting of two segments, the first horizontal and the second vertical
connecting to a point z. There is a minor ambiguity in that for some points the
required two-segment path must go right (or left) and then up, while for others the
path must go right (or left) then down, and for yet others the path is degenerate
consisting only of a horizontal segment or only of a vertical segment. If one wants to
be (extremely) careful with this there are several cases to check. There is a similar
ambiguity in the proof I’ve given above in a triangular domain, but at least all paths
proceed from one vertex of the triangle along a specified side and then “up.” The
cases I’ve swept under the rug involve the position/value of the increment h, and the
same ambiguity (or appearance of various irritating cases to check) is present in the
proof on the disk, but their2 number of cases is multiplied by the first choice of path.

2Stein’s and Ahlfors’.
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For example, if you start with a horizontal path from the center of a disk z0 to a point
z = z0+a with a > 0, then for h small, you may need a two-segment (horizontal plus
up) or a two-segment (horizontal plus down) path to write down the desired integral
from z0 to z + h defining g(z + h). This multiplication of cases does not happen in
the case of the triangular domain, as I have argued, starting from the corner. In
fact, I will make some effort below to consider (extremely) carefully the cases in a
triangular domain associated with the choice of h. I will do this in connection with
some alternative constructions which I think are somewhat interesting and instructive.

A kind of second exception may be thought of in the opposite direction: Rather
than state and prove a “simpler” version of the result as I’ve done with Goursat’s
theorem, I’ve used, without formal statement a corollary of Goursat’s theorem involv-
ing a rather quite general quadrilateral, leaving the proof as an exercise, while Stein
states and proves Corollary 1.2 which is essentially a version of Goursat’s theorem for
rectangular subdomains. Again, I will try to come back and “clean up” my result on
quadrilateral subdomains below on connection with some auxilliary constructions.

The real issue, it seems to me, however is the question of the Jordan curve theorem.
Stein says briefly that he is going to come back to it, but for a serious graduate text in
complex analysis I think what he has done here may be fairly viewed as a significant
deficiency. I say this with all due respect as I think the overall exposition is really
quite impressive. Two things can alert the careful reader to what is happening here.
The first is the appearance of “toy domains,” which I have not so far mentioned.
These are not even defined precisely and the cursory definition of them involves the
word “obvious.” What is supposed to be “obvious” about them is that “they ae
so simple that the notion of their interior will be obvious.” First of all, what he is
trying to say is that the conclusion of the Jordan curve theorem is “obvious” for these
domains, which may be more or less true, but without any explanation whatsoever
this presentation does a real disservice to the serious graduate student. At least in my
opinion in the composition of a serious exposition one should set a good example of
critical thinking for the student and at least state precisely what is being swept under
the rug. Second, and the second “red flag” for the reader, is the nonstandard use of
the term “interior.” The interior of a set is a well-defined topological term at this
point. Here the term is being used to refer to the unique bounded component of
the complement of a simple closed curve; the existence of this set is basically
the assertion of the Jordan curve theorem and is anything but obvious.

Having made my complaint(s), let me see if I can do a bit better.
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2 Goursat Subdomains

Given an open set Ω ⊂ C a simple Goursat subdomain is an open set U with
U ⊂ Ω having the following properties: First ∂U is a closed curve/contour.3 Second,
there exists a fixed natural number ν and there exists a fixed scale µ ∈ (0, 1) such
that

(i)

U =

ν
⋃

j=1

Uj

for some subdomains U1,U2, . . . ,Uν ⊂ U satisfying

(ii) Uk ∩ Uj = φ for j 6= k,

(iii)
H1

(

Uj ∩ Uk

)

= 0 for j 6= k,

and

(iv) each Uj is geometrically similar to U with

Uj = {µz + wj : z ∈ U}

for some wj ∈ C, j = 1, 2, . . . , ν.

The triangular domain is an example of a Goursat subdomain with ν = 4 and µ = 1/2.
The rectangular domain is also an example of a Goursat subdomain with ν = 4 and
µ = 1/2. Ahlfors proves Goursat’s theorem for a rectangular subdomain.

Exercise 2 Give an example of a Goursat subdomain with ν 6= 4 and/or µ 6= 1/2.
Give an example of a Goursat subdomain which is not a triangular domain or a
rectangular domain.

If α is a counterclockwise parameterization of the boundary of a simple Goursat
subdomain U , then

∫

α

=
ν

∑

j=1

∫

αj

f (5)

3By “contour” we mean a curve admitting a piecewise regular parameterization—a curve Γ that
can be used to construct a complex integral of a continuous function f : Γ → C.
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where αj is a counterclockwise parameterization of the boundary of Uj for j =
1, 2, . . . , ν. I’m not sure if it’s easy to prove (5) or not. Perhaps this assertion is
not true according to the definition I’ve given. If not, perhaps (5) should simply be
added to the definition (or be essentially taken as the definition).

Exercise 3 If (5) holds for a simple Goursat subdomain U , then each set Uj for
j = 1, 2, . . . , ν is a Goursat subdomain.

Theorem 6 (Goursat’s theorem) If f : Ω → C is complex differentiable and U is a
simple Goursat subdomain with respect to Ω, then

∫

α

f = 0

where α : [a, b] → Ω is a parameterization of ∂U .

Proof: See below.

Definition 1 A general Goursat subdomain with respect to an open set Ω ⊂ C

is a domain U ⊂ C for which ∂U is a closed contour and U ⊂ Ω with

f : Ω → C holomorphic =⇒
∫

α

f = 0

where α parameterizes Γ = ∂U and f : Ω → C is any holomorphic function.

The following result allows one to treat domains, like triangular domains or rectan-
gular domains in (a) “standard position.”

Theorem 7 The conformal image of a general Goursat subdomain is a general Gour-
sat subdomain in the following sense: If U is a general Goursat subdomain in Ω and

(i) φ : Ω →W is a surjective holomorphic function onto an open set W ⊂ C,

(ii)] φ(U) = V for some open set V ⊂W with ∂V a closed contour with parameteri-
zation β = φ ◦ α where α is a parameterization of ∂U as in the definition,

then
∫

β

f =

∫

α

f ◦ φ φ′ = 0

for any holomorphic function f : W → C.
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3 Cauchy’s Theorem for (various) Domains

We have given a proof of Cauchy’s theorem for triangular domains above and stated
Cauchy’s theorem for a rectangular domain and for a disk. We rework and generalize
this discussion below.

3.1 Cauchy Domains

Let us define a Cauchy domain to be an open set Ω ⊂ C with the property that
∫

α

f = 0

for every closed (piecewise regular) contour Γ ⊂ Ω (parameterized by α) and every
holomorphic function f : Ω → C. One might be tempted to think of a Cauchy domain
as (simply) a simply connected domain: An open set Ω ⊂ C is simply connected
if Ω if every closed curve Γ ⊂ Ω is homotopic in Ω to a point (any particular point)
z0 ∈ Ω. Two “curves,” i.e., continuous functions α : [a, b] → C and β : [a, b] → C are
homotopic if there is a continuous function h : [a, b]× [0, 1] → C with

α(t) = h(t, 0) for t ∈ [a, b], and

β(t) = h(t, 1) for t ∈ [a, b].

Given homotopic curves α and β, the continuous function h : [a, b] × [0, 1] → C

deforming one to the other is called a homotopy. Two homotopic curves are ho-
motopic in an open set Ω ⊂ C if the homotopy satisfies (or more properly if there
exists a homotopy satisfying)

h : [a, b]× [0, 1] → Ω,

i.e., the codomain of h is Ω. A homotopy deforming one curve α to another β is said
to be a fixed endpoint homotopy and the curves are said to be fixed endpoint
homotopic if

h(a, s) = α(a) and h(b, s) = α(b) for all s ∈ [0, 1].

Two (homotopic) closed curves (or loops) are said to be homotopic or homotopic
as loops if the/a homotopy satisfies

h(a, s) = h(b, s) for all s ∈ [0, 1].
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In the definition of simply connected above we are saying that given any closed
contour, i.e., a continuous, piecewise regular, parameterization α : [a, b] → Ω and any
point z0 ∈ Ω, there is a homotopy

h : [a, b]× [0, 1] → Ω

with
h(a, s) = h(b, s) for all s ∈ [0, 1]

and h(t, 1) ≡ z0. Notice that the function β : [a, b] → Ω by β(t) = h(t, 1) ≡ z0 in
this case is definitely not regular, and there is no requirement that γ(t) = h(t, s) for
s fixed parameterizes a regular curve for s > 0. Nevertheless, thinking of a Cauchy
domain as a simply connected domain is not entirely wrong.

Theorem 8 Every simply connected open set Ω ⊂ C is a Cauchy domain.

This theorem is proved in Appendix B (Theorem 1.1) of Stein and Shakarchi. Perhaps
some clarification is in order: First of all, Stein and Shakarchi have given a definition
of simply connected which differs, at least superficially, from mine. Their definition
is given on the top of page 96 in Chapter 3. It is crucial for this definition that one look
back at the definition of “region” given on page 7 of Chapter 1. The term “region”
does not have a standard meaning in mathematics, so one would think Stein and
Shakarchi would put some emphasis on the particular meaning they have attached
to this word. In any case, Stein and Shakarchi intend that a “region” is an open
subset of C which is apriori connected. Some authors require also that a “region” is
bounded. Some use the term synonomously with “open set” or even just “set.” The
word “domain” is a little bit similar. I tend to use the term “domain” to mean simply
an open subset of C. More generally, I might be a little sloppy sometimes and mean
simply a “set” on which a function is defined, i.e., the domain of a function. In any
case, one should note that Stein and Shakarchi have an underlying apriori assumption
of connectedness when they define a domain Ω to be simply connected if every pair of
curves with the same endpoints is fixed endpoint homotopic within Ω to one another.

Exercise 4 Show that the definition of simply connected given by Stein and Shakarchi
is equivalent to the one I’ve given above in which each loop is homotopic (as a loop)
to any single point in the domain.

Stein and Shakarchi also introduce a notion of holomorphically simply connected
which looks superficially like my definition of a Cauchy domain above. The difference
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is that, again, Stein and Shakarchi require/assume a holomorphically simply con-
nected domain is a “region,” that is, it is connected, but my definition of a Cauchy
domain does not assume the domain Ω is connected. It is nice that Stein and Shakarchi
get an equivalence (Theorem 1.1 of Appendix B). On the other hand, it is reasonable
to point out that the union Ω of two disjoint open disks is a domain with the property
that

∫

α

f = 0

for any holomorphic function f : Ω → C and any closed curve (parameterized by
α) in Ω. The union of two disks is a Cauchy domain, but it is not holomorphically
simply connected because it is not connected; each component is simply connected.

In a certain sense, I think the focus on the Jordan curve theorem (for piece-
wise smooth curves) in Stein and Shakarchi’s Appendix B is a little unusual and
unwaranted, but it’s a nice result to consider. On the other hand, the phrasing
of Theorem 2.3 in Appendix B of Stein and Shakarchi, especially for domains with
boundary a piecewise smooth Jordan curve, is almost a reduction to the consideration
of (general) Goursat (sub) domains as introduced above.

In Appendix B Stein and Shakarchi cover what I consider relatively important
material including

1. The properties of simply connected domains,

2. The winding number, and

3. Theorem 2.9 which they call a general form of Cauchy’s theorem.

As mentioned above Stein and Shakarchi discuss homotopies and simply connected
domains briefly in Chapter 3. They also hold off on mentioning the Riemann map-
ping theorem until Chapter 8, and I think it is nice to mention that theorem a bit
earlier—even if one does not prove it. I am going to try to cover (at least some of)
these topics below including a more general form of Cauchy’s theorem which does not
require reference to a Jordan (simple closed) curve or the Jordan curve theorem. I’m
also going to try to give an extended/alternative treatment of Goursat’s theorem and
the special cases of Cauchy’s theorem. In short I’m going to try to tie together some
topics which are separated (probably for the sake of clarity) in Stein and Shakarchi.

Here are four general abstract results concerning Cauchy domains and/or holo-
morphically simply connected domains:
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Theorem 9 If Ω is a connected Cauchy domain (holomorphically simply connected
in the terminology of Stein), then given any holomorphic function f : Ω → C and
any z0 ∈ Ω the function g : Ω → C by

g(z) =

∫

α

f (6)

where α is any countour connecting z0 to z is a well-defined complex valued function.
More generally, if C is any connected component of a Cauchy domain with z0 ∈ C,
then (6) gives a well-defined function g : C → C.

Proof: If α and β are two contours connecting z0 to z, then α−β is a closed contour,
so

∫

α−β

f = 0,

and consequently

g(z) =

∫

α

f =

∫

β

f

is well-defined. �

This general abstract result, to a large extent at least, reduces the proof of theo-
rems about the existence of primitives to the question of calculating the well-defined
function g given by (6) without worrying about which particular path one is using to
find the value of g.

Here is a second general abstract result about Cauchy domains:

Theorem 10 The conformal image of a Cauchy domain is a Cauchy domain in the
following sense: If Ω is a Cauchy domain and φ : Ω → W is a bijective holomorphic
function (conformal map) onto an open set W ⊂ C so that any parameterization β of
a contour in W can be written as β = φ ◦α for some parameterization α of a contour
in Ω, then

∫

β

f =

∫

α

f ◦ φ φ′ = 0

for any holomorphic function f : W → C.

Proof: This is just the change of variables formula for complex integrals. �

This result allows us to put domains in standard position. See the section on
triangular domains below.

A third general abstract result generalizes the first one (Theorem 9):
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Theorem 11 Let C be a connected subdomain of a Cauchy domain Ω and let z0 ∈ C.
Given a holomorphic function f : Ω → C, the following hold:

(i) The function g : C → C by

g(z) =

∫

α

f (7)

where α : [a, b] → C is any contour connecting z0 to z in C is well-defined and
satisfies

(ii) The increment

g(z + h)− g(z) = h

∫ 1

0

f(z + ht) dt

for any h small enough so that z + th ∈ C for 0 ≤ t ≤ 1, and

(iii) g′ = f on C so that f has a primitive given by (7) on C.

Proof: The fact that g is well-defined follows as in Theorem 9.
Let β parameterize a path in C connecting z0 to z + h, and let α parameterize a

path in C connecting z0 to z. Then

g(z + h)− g(z) =

∫

β

f −
∫

α

f =

∫

β

f −
∫

α

f +

∫

−γ

f +

∫

γ

f

where γ(t) = z+ th for 0 ≤ t ≤ 1 is a path connecting z to z+h. Note that β−α−γ
is an oriented closed contour starting at z0 and going to z + h (along the image of α)
and then from z + h to z (along the image of −γ) and then from z to z0 along the
image of −β. Thus, the integral along this closed countour vanishes because Ω is a
Caucny domain, and

g(z + h)− g(z) =

∫

γ

f =

∫ 1

0

f(z0 + ht) h dt.

It follows also that

lim
h→0

g(z + h)− g(z)

h
= lim

h→0

∫ 1

0

f(z0 + ht) dt = f(z). �

Finally, we have this:

Theorem 12 If Ω1, Ω2 and Ω1 ∩Ω2 are nonempty connected Cauchy domains, then
Ω1 ∪ Ω2 is a (connected) Cauchy domain.
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Proof: It is enough to construct a primitive for any holomorphic function f : Ω1∪Ω2 →
C. Let z0 ∈ Ω1 ∩ Ω2 and consider g : Ω1 ∪ Ω2 → C by

g(z) =























∫

α1

f, z ∈ Ω1

∫

α2

f, z ∈ Ω2

where α1 parametrizes a contour in Ω1 connecting z0 to z and α2 parameterizes a
contour in Ω2 connecting z0 to z. We claim the values agree when z ∈ Ω1 ∩ Ω2 so
that g is well-defined. To see this, take a parameterization β of a contour in Ω1 ∩Ω2

connecting z0 to z. Then

∫

α1

f =

∫

α1

f +

∫

−β

f +

∫

β

f =

∫

β

f

since α− β is a closed contour in Ω1 which is a Cauchy domain. Similarly,

∫

α2

f =

∫

β

f.

Therefore, the function is well-defined. By the properties of Theorem 11 we see g′ = f .
�

3.2 Method 1 for Cauchy’s Theorem(s)

The above results can be used to show various domains are Cauchy domains. We
will first show several kinds of domains Ω are Cauchy domains using the following
approach:

Step 1 Consider a closed curve Γ ⊂ Ω. Since Γ is compact and is contained in the
open set Ω, it is possible to find a scaling, i.e., a domain W that is of the form

W = {λz + z1}

where λ > 0 and z1 ∈ C, i.e., a domain that is similar to Ω, for which

Γ ⊂W ⊂W ⊂ Ω.
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Step 2 Consider unique paths connecting z0 ∈ ∂W ∩ Ω to z ∈ W .

Step 3 Given f : Ω → C, use the approach of Theorem 11 to define g : W → C by

g(z) =

∫

β

f

where β is some unique contour connecting z0 to z ∈ W .

Step 4 Use Goursat’s theorem to show (in all cases) condition (ii)

g(z + h)− g(z) = h

∫ 1

0

f(z + ht) dt

of Theorem 11 holds for z ∈ W and h ∈ C with |h| small enough.

Step 5 Conclude

lim
h→0

g(z + h)− g(z)

h
= lim

h→0

∫ 1

0

f(z0 + ht) dt = f(z)

as in Theorem 11.

Step 6 Use Corollary 3.3 of Stein and Shakarchi to conclude that since f has a
primitive on W ,

∫

α

f = 0

where α is a parameterization of Γ.

We now carry out these steps in detail for some simple domains.

3.3 Triangular domains

Perhaps the simplest, most natural, form in which to consider a triangular domain in
a kind of standard position is

U =
{

z ∈ C : cot θ Im z < Re z < a−
[a

r
csc θ − cot θ

]

Im z, 0 < Im z < r sin θ
}

(8)

where θ is an angle satisfying 0 < θ < π and a and r are positive (real) numbers; see
Figure 1. Notice that the upper bound for Re z in (8) can also be written as
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Figure 1: Trianglular domain in standard position with various coordinates.

a− 1

r
csc θ (a− r cos θ) Im z.

It is useful to consider this triangular domain (carefully) in at least two alternative
forms. The first

U = {s+ teiθ : 0 < t < (1− s/a)r, 0 < s < a} (9)

allows us to locate points within U along lines parallel to the primary side opposite
a ∈ R. Notice that for each z ∈ U , writing

z = Re z + i Im z = s+ t cos θ + it sin θ, (10)

there are unique values s = s0(z) with 0 < s < a given by

s = Re z − cot θ Im z (11)

and t = t0(z) with 0 < t < (1− s/a)r given by

t =
Im z

sin θ
= csc θ Im z (12)

for which (10) holds. Conversely, if 0 < s < a and 0 < t < (1−s/a)r, then z = s+teiθ

determines a unique point in the set defined in (8) since on the one hand

0 < t sin θ = Im z < r sin θ − (s/a)r sin θ < r sin θ,
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and on the other hand, the inequality 0 < t < (1− s/a)r implies s < a− (a/r)t, so

cot θ Im z = t cos θ < s+ t cos θ = Re z

< a− (a/r)t+ t cos θ = a− 1

r
csc θ(a− r cos θ) Im z.

An alternative to (9) is to locate points in U along lines parallel to the side of the
triangular boundary opposite the origin:

U = {(1− τ)σ + τσ(r/a)eiθ : 0 < τ < 1, 0 < σ < a} (13)

Again, the relation

σ − τσ + τσ(r/a) cos θ + iτσ(r/a) sin θ = Re z + i Im z

determines unique values σ = σ0(z) and τ = τ0(z) given by

σ = Re z +
[a

r
csc θ − cot θ

]

Im z = Re z +
1

r
csc θ(a− r cos θ) Im z (14)

and

τ =
a Im z

r sin θ Re z + (a− r cos θ) Im z
(15)

satisfying the appropriate inequalities in (13). Conversely, a given point

z = (1− τ)σ + τσ(r/a)eiθ

determined as in (13) satisfies

0 < Im z = τσ(r/a) sin θ < r sin θ,

since τσ/a < 1, and

cot θ Im z = τσ(r/a) cos θ < Re z = σ − τσ

a
(a− r cos θ)

< a− 1

r
csc θ(a− r cos θ) Im z

since Im z = τσr sin θ/a.
Finally, it may be of use to record the relations between points

s+ teiθ = (1− τ)σ + τσ(r/a)eiθ ∈ U .
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Namely,
s = σ(1− τ) and t = τσ(r/a), (16)

and

σ = s+
a

r
t =

at + rs

r
and τ =

at

at + rs
. (17)

As a consequence of our considerations so far, we have essentially completed Step 2
in Method 1 to prove Cauchy’s theorem, at least for triangle domains in standard
position.

Lemma 2 Given z = s0 + t0e
iθ ∈ U where U is a triangular domain in standard

position given by (9), there is a unique path/contour α0 + α1 given by

α0(s) = s for 0 ≤ s ≤ s0,
α1(t) = s0 + teiθ for 0 ≤ t ≤ t0

connecting 0 to z.

Exercise 5 State and prove a corresponding result for

z = (1− τ0)σ0 + τ0σ0(r/a)e
iθ ∈ U

where U is a triangular domain in standard position given by (13) giving a unique
path connecting 0 to z along a segment parallel to the side of ∂U opposite 0.

We have skipped Step 1, but we are also now ready to return to it. If Γ is a closed
curve in U given by (9), then consider

S = {(1− ǫ1)z : z ∈ U}

for 0 < ǫ1 < 1 and
W = {(1− ǫ1)z + ǫ2e

iθ/2 : z ∈ U}
for 0 < ǫ1 < 1 and ǫ2 > 0 as indicated in Figure 2. The domain S is geometrically
similar to U . In fact the domain S is a triangular domain in standard position with
sides determined by (1 − ǫ1)a ∈ R and (1 − ǫ1)re

iθ. In particular, Lemma 2 applies
to S giving unique paths. Clearly W is a translation of S and each point z ∈ W
determines a unique path α0 + α1 by

α0(s) = ǫ2e
iθ/2 + s for 0 ≤ s ≤ s0,

α1(t) = ǫ2e
iθ/2 + s0 + teiθ for 0 ≤ t ≤ t0

(18)
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Figure 2: Trianglular subdomain S in standard position and translated triangular domain

W.

connecting eiθ/2 to z where, in this instance,

s0 = Re(z − ǫ2e
iθ/2)− cot θ Im(z − ǫ2e

iθ/2) = Re z − cot θ Im z − ǫ2
2
sec(θ/2)

and
t0 = csc θ Im(z − ǫ2e

iθ/2) = csc θ Im z − ǫ2
2
sec(θ/2).

Furthermore S is clearly a subset of U . The translation W, however, will only be
a subset of U for ǫ2 small enough; see Figure 3. Let’s try to make this precise. Note
first that each z in the sector

{ρeiφ : ρ > 0, 0 < φ < θ}

determines unique real numbers ã = ca and r̃ = cr for which z is on the boundary of

Ũ = {s+ teiθ : 0 < t < (1− s/ã)r̃, 0 < s < ã}.

In fact, the relation (14) applies even for z /∈ U to give

ã = σ = Re z +
1

r
csc θ(a− r cos θ) Im z > 0. (19)

The corresponding r̃ is given by similarity of the triangular boundaries of ∂U and ∂Ũ :

r̃ =
r

a
ã =

r

a
Re z +

1

a
csc θ(a− r cos θ) Im z > 0.

The expressions for ã and r̃ here are determined so that z is on the portion of ∂Ũ
opposite 0. If we take a typical point

z = s+ teiθ + ǫ2e
iθ/2 ∈ W
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Figure 3: Translated triangular domain W and the triangular domain Ũ determined by a

point z in the sector determined by θ.

with 0 < s < (1 − ǫ1)a and 0 < t < (1 − ǫ1 − s/a)r, then the corresponding ã
determined by (19) is

ã = s + t cos θ + ǫ2 cos(θ/2) +
1

r sin θ
(a− r cos θ)[t sin θ + ǫ2 sin(θ/2)]

= s + t cos θ + ǫ2 cos(θ/2) +
t

r
(a− r cos θ) +

ǫ2
2
(a− r cos θ)

1

r cos(θ/2)

= s + t
(a

r

)

+
ǫ2
2

(

2 cos(θ/2) +
a

r cos(θ/2)
− cos θ

cos(θ/2)

)

= s + t
(a

r

)

+
ǫ2
2

(

2 cos(θ/2) +
a

r cos(θ/2)
− 2 cos2(θ/2)− 1

cos(θ/2)

)

= s + t
(a

r

)

+
ǫ2
2
(a + r)

1

r cos(θ/2)
(20)

< s + (1− ǫ1 − s/a)a+
ǫ2
2
(1 + a/r) sec(θ/2)

= (1− ǫ1)a+
ǫ2
2
(1 + a/r) sec(θ/2).

From this we see W ⊂ U for

(1− ǫ1)a +
ǫ2
2
(1 + a/r) sec(θ/2) ≤ a,
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that is

ǫ2 ≤ 2ǫ1
a

1 + a/r
cos(θ/2) =

2ar cos(θ/2)

a+ r
ǫ1. (21)

The open set W is compactly contained in U , which means

W ⊂ U
and is denoted by W⊂⊂U , if strict inequality holds in (21).

It may be recalled, after this lengthy discussion of the translated domain W that
we started our discussion of Step 1 with mention of a closed curve Γ contained in U .
In order to finally relate W to Γ, we note first that since Γ is a compact subset of the
open set U we have

dist(Γ, ∂U) = inf{|z − ζ | : z ∈ Γ, ζ ∈ ∂U} = δ > 0

is a positive number. Generally, given a point z ∈ U ,
dist(z, ∂U) = min{dist(z, L0), dist(z, L1), dist(z, L2)} (22)

where L0, L1, and L2 are the three lines containing the sides of ∂U . Taking L0 to be
the side opposite 0 and L1 the bottom side (on the real axis), we can rewrite (22) as

dist(z, ∂U) = min

{

r sin θ

a
√
a2 + r2 − 2ar cos θ

[

a2 − aRe z − csc θ(a− r cos θ) Im z
]

,

Im z, sin θRe z − cos θ Im z

}

.

The expression for dist(z, L0) is obtained by taking the value ã given in (19) associated
with z and then using similar triangles. Note that the quantity

a2 − aRe z − csc θ(a− r cos θ) Im z > 0

whenever z ∈ U . The expression for dist(z, L2) is obtained by taking the value s
given in (11) associated with z and projecting onto the line perpendicular to L2.

Now let us assume

ǫ2 <
2ar cos(θ/2)

a+ r
ǫ1,

that is strict inequality holds in (21) so that U ⊂⊂U , and also cosider the three lines
M0, M1, and M2 containing the three corresponding sides of ∂W. If M0 is the line
containing the side opposite ǫ2e

iθ/2, then

dist(M0, L0) =
r sin θ√

a2 + r2 − 2ar cos θ

[

ǫ1a−
ǫ2
2
(1 + a/r) sec(θ/2)

]
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and dist(M1, L1) = d(M2, L2) = ǫ2 sin(θ/2). Given a point z ∈ U with dist(z, Lj) >
dist(z,Mj) for j = 0, 1, 2 one must have z ∈ W. In particular, if z ∈ Γ, then
dist(z, Lj) ≥ δ > 0 for j = 0, 1, 2, so if

ǫ1 <
aδ

r sin θ

√
a2 + r2 − 2ar cos θ

and

ǫ2 < min

{

δ

sin(θ/2)
,
2ar cos(θ/2)

a + r
ǫ1

}

we have Γ ⊂ W ⊂ W ⊂ U as desired.

Exercise 6 Show that given a curve Γ ⊂ U , where U is simply some open subset of
C, it is not always possible to find a subdomain W geometrically similar to U with

Γ ⊂ W ⊂ W ⊂ U . (23)

Show that it is possible to obtain (23) when U is convex or star shaped, i.e., there is
a point z0 so that the segment

{(1− t)z0 + tζ : 0 ≤ t < 1} ⊂ U

for every ζ ∈ ∂U .

We have completed Step 1 and Step 2. Turning to Step 3, we take the path
α = α0 + α1 : [0, s0] ⊔ [0, t0] → W defined4 in (18) above and derived from Lemma 2
and define g : W → C by

g(z) =

∫

β

f.

The function g is well-defined because the path β connecting ǫ2e
iθ/2 to z is unique.

4The symbol “⊔” is used here to denote the formally disjoint union of two sets. Notice
that the two intervals [0, s0] and [0, t0] are not disjoint, but a path is typically defined on a single
interval [a, b]. There are various ways to deal with the concatenation. One possibility is to define
β(t) = α0(t) for 0 ≤ t ≤ s0 and β(t) = α1(t−s0) for s0 ≤ t ≤ s0+ t0 so that [a, b] = [0, s0+ t0]. Here
we have considered [a, b] ≈ [0, s0] ⊔ [0, t0] instead. Formally this means we consider the set of pairs
I0 = {(t, 0) : 0 ≤ t ≤ s0} ∪ {(t, 1) : 0 ≤ t ≤ t0}. Making a topological identification of the points
(s0, 0) and (0, 1) in I0 we obtain a set I which can be given a topology (and even a metric) so that it
is isometric to an interval [a, b]. This is the somewhat cumbersome meaning of [a, b] ≈ [0, s0]⊔ [0, t0].

26



We next consider Step 4 which in some sense is the reason for the various steps
of Method 1. We recall the form of the path β in this case:

α0(s) = ǫ2e
iθ/2 + s for 0 ≤ s ≤ s0,

α1(t) = ǫ2e
iθ/2 + s0 + teiθ for 0 ≤ t ≤ t0

where

s0 = s0(z) = Re z − cot θ Im z and t0 = t0(z) = csc θ Im z.

Notice then that the unique path connecting z0 = ǫ2e
iθ/2 to z + h has

s0(z+h) = Re z−cot θ Im z+Reh−cot θ Imh and t0(z+h) = csc θ Im z+csc θ Imh.

This leads to four cases

(i) Reh− cot θ Imh < 0,

(ii) Reh− cot θ Imh = 0 and Imh < 0,

(iii) Reh− cot θ Imh = 0 and Imh > 0, and

(iv) Reh− cot θ Imh < 0

as indicated in Figure 4.
Let us consider a triangular domain:

Theorem 13 (Cauchy’s theorem on a triangular domain in standard position) The
domain

U = {s+ teiθ : 0 < t < (1− s/a)r, 0 < s < a}
is a Cauchy domain.
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Figure 4: Different cases for the path to the increment z + h.
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