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In studying the Fourier transform

f̂(ξ) =

∫ ∞

−∞

f(x) e2πixξ dx

two important classes of decaying functions are often considered. The first consists
of function f ∈ C0(R → C) for which there is a constant A > 0 with

|f(x)| ≤ A

1 + x2
for x ∈ R. (1)

These are functions for which the Fourier transform is well defined as a uniformly
continuous function f̂ : R → C. Under certain additional conditions on f , it can
also be shown that the Fourier transform f̂ satisfies a decay condition: There is some
B > 0

|f̂(ξ)| ≤ B e−2πy|ξ| for ξ ∈ R (2)

for y in some interval 0 < y < b. Thus, these exponentially decaying functions
constitute a second class of decaying functions which are of interest.

These two classes of decaying functions interact in the following way: Given a
function f ∈ C0(R → C) satisfying the decay condition (1), we obtain a function
f̂ ∈ C0(R → C) satisfying the decay condition (2). To this function f̂ we would like
to apply the Fourier inversion formula

g(x) =

∫ ∞

−∞

f̂(ξ) e2πiξx dξ.

In order for this formula to be well-defined and define a function g ∈ C0(R → C),
which presumably under appropriate conditions should be the function f , we need f̂
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to satisfy a decay condition

|f̂(ξ)| ≤ C

1 + ξ2
for ξ ∈ R

where C > 0 is some constant. Since the exponential decays faster than the reciprocal
of the quadratic, it may be observed that for large |ξ| in particular we should have

e−2πy|ξ| <
1

1 + ξ2
.

In fact for 0 < y < b

lim
|ξ|→∞

e2πy|ξ|

1 + ξ2
= lim

|ξ|→∞

2πye2πy|ξ|

2ξ
= lim

|ξ|→∞
2π2y2e2πy|ξ| = +∞.

Thus, we may define R : (0,∞) → [0,∞) by

R(y) = min{t ∈ [0,∞) : φ(ξ, y) ≤ ψ(ξ) for ξ ≥ t}

where

φ(ξ) = φ(ξ, y) = e−2πy|ξ| and ψ(ξ) =
1

1 + ξ2
.

It will be observed that the two functions φ and ψ are even, so only values corre-
sponding to ξ ≥ 0 need be considered, and we may also assume φ is differentiable at
ξ = 0 with derivative

φ′(0) = φ′(0+) = −2πy < 0.

Furthermore since,

ψ′(ξ) = − 2ξ

(1 + ξ2)2
≤ 0

with equality only for ξ = 0, there is some t > 0 for which φ(ξ) < ψ(ξ) for 0 < ξ < t,
and we may define r : (0,∞) → (0,∞] by

r(y) = sup{t ∈ [0,∞) : φ(ξ, y) < ψ(ξ) for 0 < ξ < t} > 0.

There are several obvious questions to ask about the nature of the functions r = r(y)
and R = R(y) as well as the relation between the functions φ and ψ. Two main
assertions are the following:

Theorem 1 For y > 0 large enough, φ(ξ, y) < ψ(ξ) for ξ > 0. Consequently,
R(y) = 0 and r(y) = +∞.
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Theorem 2 For y > 0 small enough there exist points ξ > 0 with φ(ξ, y) > ψ(ξ).
Consequently, 0 < r(y) < R(y).

To see the first assertion, note that for ξ ≥ 0

φ(ξ) =
1

∑∞
n=0

(2πyξ)n

n!

<
1

1 + (2πyξ)2

2

≤ 1

1 + ξ2
= ψ(ξ) if y ≥ 1

2π
.

For the second assertion, note that ψ is independent of y while φ = φ(x, y) is decreas-
ing in y with

∂φ

∂y
= −2π|ξ|e−2πy|ξ| (3)

with φ(ξ, y) converging uniformly to 1 on sets K ⊂⊂[0,∞) as y ց 0. Specifically, we
can say that for any ǫ > 0 and any t > 0, there is some δ > 0 such that 0 < y < δ
implies

0 < 1− φ(ξ, y) < ǫ for 0 < ξ < t.

Since ψ(ξ) < 1 for every fixed ξ > 0, there we will clearly have

φ(ξ, y) > 1− ǫ > ψ(ξ) for ǫ > 0 small enough and δ = δ(ǫ) > 0 small enough.

Having established Theorem 1 and Theorem 2, we can conclude that the set

U = U(y) = {ξ ∈ (0,∞) : φ(ξ, y) > ψ(ξ)}

satisfies for some y∗ > 0 and some y∗∗ ≥ y∗

(i) U(y) = φ for y > y∗∗, and

(ii) U(y) 6= φ for 0 < y < y∗.

Furthermore, it follows from (3) that

U(y2) ⊂ U(y1) for 0 < y1 ≤ y2. (4)

We conclude that for some unique1

y0 = min{y ∈ (0,∞) : U(y) = φ} .
= 0.12808 > 0

the following hold:

1The transcendental equation leading to the numerical approximation of this value will be ad-

dressed below. See Lemma 1 and its proof.
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(i) U(y) = φ for y ≥ y0,

(ii) U(y) 6= φ for y < y0,

(iii) The set inclusion in (4) is strict unless y1 ≥ y0, and

(iv) When y = y0 we have U(y0) = 0 so that

φ(ξ, y0) ≤ ψ(ξ) for ξ > 0,

but there exists at least one point ξ = ξ0 > 0 for which

φ(ξ0, y0) = ψ(ξ0).

At any such point ξ0 > 0 there holds

φ′(ξ0) =
∂φ

∂ξ
(ξ0, y0) = ψ′(ξ0).

Lemma 1 There is precisely one positive ξ0 = ξ0(y0)
.
= 1.98029 > 0 satisfying the

conditions described above with

φ(ξ0) = ψ(ξ0) and

φ′(ξ0) = ψ′(ξ0).

Proof: The prescribed system of equations, which we know corresponds to at least
one pair (ξ0, y0) ∈ (0,∞)× (0,∞) requires

e−2πy0ξ0 =
1

1 + ξ20
and − 2πy0 e

−2πy0ξ0 = − 2ξ0
(1 + ξ20)

2
. (5)

Substituting the value of the exponential from the first equation into the second
equation, we obtain a relation

−2πy0
1

1 + ξ20
= − 2ξ0

(1 + ξ20)
2

or πy0 ξ
2
0 − ξ0 + πy0 = 0. (6)

Thus, we have an equation which is quadratic in ξ0 and may be solved in the form

ξ0 =
1±

√

1− 4π2y20
2πy0

.
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Returning to the first equation in (5) we compute

ξ20 =
1− 2π2y20 ±

√

1− 4π2y20
2π2y20

and 1 + ξ20 =
1±

√

1− 4π2y20
2π2y20

so that the first equation may be written as

e−1∓
√

1−4π2y2
0 =

2π2y20

1±
√

1− 4π2y20
. (7)

Thus, ξ0 is eliminated from this equation. To simplify notation, let us write

α =
√

1− 4π2y20.

Then

2π2y20 =
1− α2

2

and (7) becomes

e−1∓α =
1− α2

2

1

1± α
. (8)

Notice that the choice of sign is coordinated, so this becomes two equations

e−1−α =
1− α

2
and e−1+α =

1 + α

2
. (9)

The first of these (transcendental) equations,

1

e
e−α = −1

2
(α− 1)

is seen to have a unique positive root at a value α0
.
= 0.5936. This corresponds to

the unique values

y0 =
1

2π

√

1− α2
0
.
= 0.12808 and ξ0 =

1 +
√

1− 4π2y20
2πy0

.
= 1.98029

posited by the lemma. The second equation in (9) has the unique solution α = 1
corresponding nominally to y = 0 and ξ = 0. This may be viewed as the degenerate
case in which φ = φ(ξ, 0) ≡ 1 ≥ ψ(ξ) for all ξ, but indeed φ(0) = 1 = ψ(0) and
φ′(0) = 0 = ψ′(0). At any rate, this does not lead to positive values for ξ0 and y0 as
shown to exist based on our analysis of the sets U(y) for y > 0.
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Since we have characterized all possible values of ξ0 > 0 and y0 > 0 and found
precisely one we have established the assertion of Lemma 1. �

We have shown that for y ≥ y0 where

y0 =
1

2π

√

1− α2
0
.
= 0.12808

and α0
.
= 0.5936 is the unique positive solution of

1

e
e−α0 = −1

2
(α0 − 1)

there holds

e−2πy|ξ| ≤ 1

a+ ξ2
. (10)

Furthermore, we know equality holds in (10) for ξ = 0, and we have shown that aside
from the equality at ξ = 0 the inequality is always strict unless y = y0 and

ξ0 =
1 +

√

1− 4π2y20
2πy0

.
= 1.98029.

We recall a result from our consideration of the Fourier transform (or Stein and
Shakarchi’s Theorem 2.1 of Chapter 4):

Lemma 2 (Theorem 2.1 in Stein and Shakarchi) For f : Ω → C holomorphic on the
strip

Ω = {x+ iy ∈ C : x ∈ R and 0 < y < b}
and satisfying for some A > 0 the uniform decay estimate

|f(x+ iy)| ≤ A

1 + x2
for x, y ∈ R with x+ iy ∈ Ω, (11)

we havefor each fixed y with 0 ≤ y < b

|f̂(ξ)| ≤ πAe−2πy|ξ| for ξ ∈ R. (12)

We may now state a corollary of this result using (10):
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Corollary 3 For f : Ω → C holomorphic on the strip

Ω = {x+ iy ∈ C : x ∈ R and 0 < y < b}

for some b ≥ y0 and satisfying for some A > 0 the uniform decay estimate

|f(x+ iy)| ≤ A

1 + x2
for x, y ∈ R with x+ iy ∈ Ω,

we have

|f̂(ξ)| ≤ πA

1 + ξ2
for ξ ∈ R.

It remains to address the situation when 0 < y < y0. In this case, the set

U(y) = {ξ ∈ (0,∞) : φ(ξ) > ψ(ξ)}

is nonempty but satisfies U = U(y)⊂⊂(0,∞). We recall, however, that 2πy0 < 1.
This means that for 0 < y < y0 we have

φ(ξ) =
1

∑∞
n=0

(2πyξ)n

n!

<
1

1 + (2πyξ)2

2

≤ 1

2πy + 2πyξ2
=

1

2πy
ψ(ξ).

Therefore, for y fixed with 0 < y < y0, the set
{

β > 0 : e−2πy|ξ| ≤ β

1 + ξ2
for ξ ∈ R

}

is nonempty. Also, note that (trivially)

∂

∂β

β

1 + ξ2
=

1

1 + ξ2
> 0.

We conclude there is a unique function B : (0, y0) → (1,∞) given by

B(y) = min

{

β > 1 : e−2πy|ξ| ≤ β

1 + ξ2
for ξ ∈ R

}

giving the least value B = B(y) for which

e−2πy|ξ| ≤ B

1 + ξ2
for ξ ∈ R. (13)

In order to show equality holds in (13) with B = B(y) for precisely one value ξ =
η(y) > 0 we prove a kind of second version of Lemma 1. It is striking that we also
obtain completely explicit expressions for B(y) and η(y).
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Lemma 4 For 0 < y < y0, there is a unique B = B(y) > 1 and a unique ξ = η(y) >
0 giving a solution of the (transcendental) system

φ(ξ) = φ(y, ξ) = e−2πyξ =
B

1 + ξ2
= B ψ(ξ) (14)

φ′(ξ) = φξ(y, ξ) = −2πye−2πyξ = − 2Bξ

(1 + ξ2)2
= B ψ′(ξ). (15)

In fact,

η = η(y) =
1

πy

√

1− 2π2y2 +
√

1− 4π2y2

2
, (16)

and

B(y) = min

{

β > 1 : e−2πy|ξ| ≤ β

1 + ξ2
for ξ ∈ R

}

= (1 + η2)e−2πyη

=
1 +

√

1− 4π2y2

2π2y2
e−1−

√
1−4π2y2 . (17)

Proof: We know the system (14-15) holds for at least one value ξ = η for

B = B(y) = min

{

β > 1 : e−2πy|ξ| ≤ β

1 + ξ2
for ξ ∈ R

}

.

Substituting as in the proof of Lemma 1, we have

−2πy
B

1 + η2
= − 2Bη

(1 + η2)2

or
πy =

η

1 + η2
.

This equation is very similar to the equation in (6) except that y is now a given value
instead of an unknown. Notice also that B, and our particular choice of B, does not
play an essential role; we only need the existence of some B that corresponds to a
solution. As in (6) we get a quadratic equation

piyη2 − η + πy = 0
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with solution(s)

η =
1±

√

1− 4π2y2

2πy
.

Recognizing that at least one of these numbers (and possibly both) should yield a
solution, we compute

η2 =
1− 2π2y2 ±

√

1− 4π2y2

2π2y2

and

1 + η2 =
1±

√

1− 4π2y2

2π2y2
= 2

1± α

1− α2

where α =
√

1− 4π2y2. As before 2π2y2 = (1− α2)/2 and equation (14) becomes

e−1∓α =
B

2(1± α)
(1− α2).

As in the proof of Lemma 1 we consider each choice of coordinated sign separately:
Choosing the top sign gives

1

e
e−α =

B

2
(1− α). (18)

The function g(α) = e−α/e on the left is decreasing and convex for α > 0 with

g(0) =
1

e
<

1

2
and lim

αր∞
g(α) = 0.

The function h(α) = b(1 − α)/2 is decreasing and affine with

h(0) =
B

2
>

1

2
.

Therefore, there is a unique α > 0 determined by (18), and because g(α) > 0, it must
be the case that 0 < α < 1. This value corresponds to the unique solution giving (16)
in the statement of the lemma.

The alternative (bottom) choice of sign gives

1

e
eα =

B

2
(1 + α). (19)

The function g(α) = eα/e on the left is increasing and convex for α > 0 with

g(0) =
1

e
<

1

2
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while h(α) = b(1 + α)/2 is increasing and affine with

h(0) =
B

2
>

1

2
.

Again, there is a unique solution α > 0 of (19). In this case, however, g(1) = 1 <
B = h(1). Therefore, α > 1, and this value is not

α =
√

1− 4π2y2 < 1.

The solution here is essentially extraneous. We have established the existence and
uniqueness, and the value of B = B(y) given in the statement of the lemma can be
computed from (14). �

There are a number of additional aspects of the comparison between

φ(ξ, y) = e−2πy|ξ| and ψ(ξ) =
1

1 + ξ2

which would be interesting to explore. The regularity and the monotonicity of the
functions R and r appearing in Theorems 1 and 2 would be nice to understand. Can
these functions be expressed in terms of solutions of transcendental equations (or
explicitly)? It would also be nice to know the sets

U = U(y) = {ξ ∈ (0,∞) : φ(ξ, y) > ψ(ξ)}

with the nesting property established in (4) are intervals (when they are nonempty).
I guess I will leave these considerations to someone else; I may have already found
out more about this topic that anyone wants to know.
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