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In studying the Fourier transform

i) = / " (@) @ dn

two important classes of decaying functions are often considered. The first consists
of function f € C°(R — C) for which there is a constant A > 0 with

A
@l < Ty

for xzeR. (1)

These are functions for which the Fourier transform is well defined as a uniformly
continuous function f : R — C. Under certain additional conditions on f, it can

also be shown that the Fourier transform f satisfies a decay condition: There is some
B >0 X
fOI< B for  ¢eR (2)

for y in some interval 0 < y < b. Thus, these exponentially decaying functions
constitute a second class of decaying functions which are of interest.

These two classes of decaying functions interact in the following way: Given a
function f € C°(R — C) satisfying the decay condition (1), we obtain a function
f e C°(R — C) satisfying the decay condition (2). To this function f we would like
to apply the Fourier inversion formula

o(z) = / o) e ae,

In order for this formula to be well-defined and define a function g € C°(R — C),
which presumably under appropriate conditions should be the function f, we need f
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to satisfy a decay condition

C

f < — fo eR
fOI< g o €
where C' > 0 is some constant. Since the exponential decays faster than the reciprocal

of the quadratic, it may be observed that for large |¢| in particular we should have

e~ 2mlél 1 )
1+ &2
In fact for 0 <y < b
2mlé] Uyl
lim —— = lim —2— = lim 27%%e?™ll = 100,
oo 1 + &2 Jglooo  2€ |¢]—o0 Y

Thus, we may define R : (0,00) — [0,00) by

R(y) = min{t € [0,00) : ¢(&,y) < (&) for § = 1}

where '
P(&) = (&, y) = e 2™ and W) = e

It will be observed that the two functions ¢ and v are even, so only values corre-
sponding to & > 0 need be considered, and we may also assume ¢ is differentiable at
¢ = 0 with derivative

¢'(0) = ¢'(07) = —2my < 0.
Furthermore since,

e 2%
¥(E) =~y g <

with equality only for £ = 0, there is some ¢ > 0 for which ¢(§) < ¥(§) for 0 < € < ¢,
and we may define r : (0, 00) — (0, 00| by

r(y) = sup{t € [0,00) : (&, y) < Y(&) for 0 < £ <t} > 0.

There are several obvious questions to ask about the nature of the functions r = r(y)
and R = R(y) as well as the relation between the functions ¢ and ¢. Two main
assertions are the following:

Theorem 1 For y > 0 large enough, ¢(&,y) < (&) for € > 0. Consequently,
R(y) =0 and r(y) = +o0.



Theorem 2 For y > 0 small enough there exist points & > 0 with ¢(&,y) > P (§).
Consequently, 0 < r(y) < R(y).

To see the first assertion, note that for & > 0

1 1 1

¢(&) = s Cmdt = 1+% = 1+¢&2

n=0 n!

1
=) if y=> o

For the second assertion, note that 1 is independent of y while ¢ = ¢(x,y) is decreas-
ing in y with
99

v —2myl|
5, = ~2rlele 3)

with ¢(&,y) converging uniformly to 1 on sets K CC|0,00) as y N\, 0. Specifically, we
can say that for any € > 0 and any t > 0, there is some 6 > 0 such that 0 <y < ¢
implies

0<1—09(&y) <e for 0<&<t.

Since ¥(§) < 1 for every fixed £ > 0, there we will clearly have
o(&y)>1—e> () for € > 0 small enough and ¢ = §(e) > 0 small enough.
Having established Theorem 1 and Theorem 2, we can conclude that the set
U=Uly) ={€ € (0,00): 0(§y) > ¥(&)}
satisfies for some y, > 0 and some y,, > v,
(1) Uly) = ¢ for y > Y., and
(i) Uly) # ¢ for 0 < y < y..

Furthermore, it follows from (3) that
U(y) CU(yr)  for 0 <y <o (4)
We conclude that for some unique’
yo = min{y € (0,00) : U(y) = ¢} = 0.12808 > 0

the following hold:

'The transcendental equation leading to the numerical approximation of this value will be ad-
dressed below. See Lemma 1 and its proof.



(i) U(y) = ¢ for y > yo,
(ii) Uly) # ¢ for y <y,
(iii) The set inclusion in (4) is strict unless y; > yo, and

(iv) When y = yo we have U(yy) = 0 so that

¢ y0) <€) for  £>0,

but there exists at least one point £ = &y > 0 for which

P(0, Yo) = ¥(&o)-
At any such point & > 0 there holds

99

¢/(50) = 8—5(50,%) = W(fo)-

Lemma 1 There is precisely one positive & = &o(yo) = 1.98029 > 0 satisfying the
conditions described above with

?(&0) = ¥(&o) and
¢’ (&) = ¥'(&o)-

Proof: The prescribed system of equations, which we know corresponds to at least
one pair (&, yo) € (0,00) x (0,00) requires
1

—27yo&o __ —2myolo _
e = and — 2Ty € = —
14 & Y

280
(1+&5)*
Substituting the value of the exponential from the first equation into the second
equation, we obtain a relation

1 2%
L+¢& (1+&)

()

—27Yo or Ty & — o + Ty = 0. (6)

Thus, we have an equation which is quadratic in £, and may be solved in the form

_ 1+ 1 — 4m2y?

) T

4



Returning to the first equation in (5) we compute

14 4/1— 42y}
272y2

1 —-27%yd £ /1 — An?yd

2 _
272 and 1+& =

&

so that the first equation may be written as

2,2
e 1TV 14725 27 Yo . (7)
14 /1 —4r2y?

Thus, & is eliminated from this equation. To simplify notation, let us write

a=1/1—4m2y2.

Then

and (7) becomes
1—a® 1
—1Fa _
‘ 2 1+a (®)

Notice that the choice of sign is coordinated, so this becomes two equations

1-— 1
e = 5 a and e 't = %. 9)

The first of these (transcendental) equations,
1 1
S e = — (-1
S € 5la—1)

is seen to have a unique positive root at a value ay = 0.5936. This corresponds to
the unique values

1 1+ /1T —dn2g?
o= —+/1—a2=012808 and & — — Y0 - 1.98029
2 2TYo

posited by the lemma. The second equation in (9) has the unique solution o = 1
corresponding nominally to y = 0 and £ = 0. This may be viewed as the degenerate
case in which ¢ = ¢(£,0) = 1 > (&) for all £, but indeed ¢(0) = 1 = 9(0) and
¢'(0) =0 =1'(0). At any rate, this does not lead to positive values for £, and y, as
shown to exist based on our analysis of the sets U(y) for y > 0.
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Since we have characterized all possible values of & > 0 and gy, > 0 and found
precisely one we have established the assertion of Lemma 1. O

We have shown that for y > yo where

1 .
Yo =5 1 —a2=0.12808

and oy = 0.5936 is the unique positive solution of

1 . 1
E e 0 = —5(05() — 1)
there holds )
—2mylel < : 10
¢ ~a+ &2 (10)

Furthermore, we know equality holds in (10) for £ = 0, and we have shown that aside
from the equality at & = 0 the inequality is always strict unless y = 1o and

1 — 4n2y2

= 1.98029.
2myo

o=

We recall a result from our consideration of the Fourier transform (or Stein and
Shakarchi’s Theorem 2.1 of Chapter 4):

Lemma 2 (Theorem 2.1 in Stein and Shakarchi) For f : Q0 — C holomorphic on the
Strip
Q={r+iyeC:zeRand 0 <y < b}

and satisfying for some A > 0 the uniform decay estimate

|f(x+iy)| < for z,y € R with =z +iy €, (11)

1+ 22
we havefor each fixed y with 0 <y < b

1f(6)] < mAe 2™ for ¢ eR. (12)

We may now state a corollary of this result using (10):



Corollary 3 For f: Q2 — C holomorphic on the strip
Q={r+iyeC:zeRand 0 <y < b}

for some b > yo and satisfying for some A > 0 the uniform decay estimate

|f(:£+iy)|§1+x2 for z,y € R with x+iy €,
we have 4
A T
If(&)] < ?52 for eR

It remains to address the situation when 0 < y < yo. In this case, the set

Uly) ={€ € (0,00) : 9(§) > ¢(£)}

is nonempty but satisfies U = U(y) CC(0,00). We recall, however, that 27y, < 1.
This means that for 0 < y < yo we have

1 1 1 1

- < = -
¢(€) S Lt "y G = 9y 4 2mye?  2my

n=0 n!

Therefore, for y fixed with 0 < y < yo, the set
. —2myl€ B
{5>0.e y"SngforgeR}

is nonempty. Also, note that (trivially)

o B 1
pIr e 1re

We conclude there is a unique function B : (0,yy) — (1, 00) given by

B(y) = min{ﬁ > 1:e 2kl < = for £ € R}
giving the least value B = B(y) for which
B
—2myl€

In order to show equality holds in (13) with B = B(y) for precisely one value £ =
n(y) > 0 we prove a kind of second version of Lemma 1. It is striking that we also
obtain completely explicit expressions for B(y) and n(y).
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Lemma 4 For0 <y < yo, there is a unique B = B(y) > 1 and a unique & = n(y) >
0 giving a solution of the (transcendental) system

B
06) = 6l.6) = ¢ = T = BU(E) (19)
' Come 2B
P'(&) = Pe(y,§) = —2mye ? 5——m—3¢(5)- (15)
In fact,
n=nly) = i\/l_%ﬂyhr T (16)
Y 2
and
B(y) = min {B > 1:e 2kl < 1f£2 for £ € R}

= (L+a)e

~ 14+ m e_l_m’ (17)

2722

Proof: We know the system (14-15) holds for at least one value £ = 7 for

B = B(y) :min{5> 1:e 2l < % forfeR}.

Substituting as in the proof of Lemma 1, we have

9y B _ 2Bn
1 +n? (1+n?)?
or n
Y = m

This equation is very similar to the equation in (6) except that y is now a given value
instead of an unknown. Notice also that B, and our particular choice of B, does not
play an essential role; we only need the existence of some B that corresponds to a
solution. As in (6) we get a quadratic equation

piyn* —n+my =0



with solution(s)

1+ /1 — 4m2y?

21y

’)7:

Recognizing that at least one of these numbers (and possibly both) should yield a

solution, we compute
,  l—2my® £ /1 — dn2y?

n

Im2y?
and
o 1E/1—4r?y? 1+
14+n" = =2
272y? 1—a?
where a = /1 — 472y2. As before 27%y? = (1 — a?)/2 and equation (14) becomes
B
—1Fa _ 1— 2
¢ Tra )

As in the proof of Lemma 1 we consider each choice of coordinated sign separately:
Choosing the top sign gives

1 B
—e“=—(1—a). 18
St =T -a) (18)
The function g(a) = e~*/e on the left is decreasing and convex for ae > 0 with
=<l ad  timgla)=0
A B A

The function h(a) = b(1 — «)/2 is decreasing and affine with

h0) = = > -.
0)=35>3
Therefore, there is a unique o > 0 determined by (18), and because g(a) > 0, it must
be the case that 0 < a < 1. This value corresponds to the unique solution giving (16)
in the statement of the lemma.

The alternative (bottom) choice of sign gives

1 B
S =21+ a). 19
L =T (+a) (19)
The function g(«) = e*/e on the left is increasing and convex for o > 0 with
1 1
0)=-< 2
9(0) = - <5



while h(a) = b(1 + «)/2 is increasing and affine with

Again, there is a unique solution o > 0 of (19). In this case, however, g(1) = 1 <
B = h(1). Therefore, a > 1, and this value is not

a=+/1—4r2y? < 1.

The solution here is essentially extraneous. We have established the existence and
uniqueness, and the value of B = B(y) given in the statement of the lemma can be
computed from (14). O

There are a number of additional aspects of the comparison between

1

ey =™ and W) =

which would be interesting to explore. The regularity and the monotonicity of the
functions R and r appearing in Theorems 1 and 2 would be nice to understand. Can
these functions be expressed in terms of solutions of transcendental equations (or
explicitly)? It would also be nice to know the sets

U=U(y) ={€(0,00):9(§y) > (&)}

with the nesting property established in (4) are intervals (when they are nonempty).
I guess I will leave these considerations to someone else; I may have already found
out more about this topic that anyone wants to know.
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