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The Fourier transform is primarily a correspondence between pairs of functions
of a real variable, though the values of the functions are naturally complex. More
precisely, given a function f ∈ C0(R → C) satisfying, for some constant A > 0, a
decay estimate

|f(x)| ≤
A

1 + x2
for x ∈ R, (1)

we define the Fourier transform f̂ : R → C by

f̂(ξ) =

∫ ∞

−∞

f(x) e−2πixξ dx. (2)

Lemma 1 Given the decay condition (1), the value of the (hybrid) integral in (2) is
a well-defined complex number, and the Fourier transform f̂ ∈ C0(R → C).

Proof:
∫ R

−R
f(x) e−2πixξ dx is well-defined as a hybrid integral simply because f is

continuous. Also,

∣

∣

∣

∣

∫ R

−R

f(x) e−2πixξ dx

∣

∣

∣

∣

≤

∫ R

−R

|f(x)| dx

≤ A

∫ R

−R

1

1 + x2
dx

= 2A tan−1R (3)

≤ A

∫ ∞

−∞

1

1 + x2
dx

= πA. (4)
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In particular, M =
∫∞

−∞
|f(x)| dx ≤ πA < ∞. Notice that for any ǫ > 0, there is

some N > 0 for which R ≥ N implies

∫ −R

−∞

|f(x)| dx+

∫ ∞

R

|f(x)| dx = M −

∫ R

−R

|f(x)| dx < ǫ. (5)

For n = 1, 2, 3, . . . let

In =

∫ n

−n

f(x)e−2πixξ dx.

Then for m > n,

Im − In =

∫ −n

−m

f(x)e−2πixξ dx+

∫ m

n

f(x)e−2πixξ dx,

and

|Im − In| ≤

∫ −n

−m

|f(x)| dx+

∫ m

n

|f(x)| dx ≤

∫ −n

−∞

|f(x)| dx+

∫ ∞

n

|f(x)| dx.

In view of the assertion associated with (5) it follows that {In}
∞
n=1 is a Cauchy se-

quence in C, and there is a well-defined complex number

I = lim
nր∞

In ∈ C.

Also, in view of the assertion associated with (5) we can take for any ǫ > 0 some
N > 0 for which

∫ −R

−∞

|f(x)| dx+

∫ ∞

R

|f(x)| dx <
ǫ

2

whenever R > N . Therefore, if R > N we can also take n ∈ N with n > R and we
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will have
∣

∣

∣

∣

∫ R

−R

f(x)e−2πixξ dx− I

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ R

−R

f(x)e−2πixξ dx− In

∣

∣

∣

∣

+ |In − I|

=

∣

∣

∣

∣

∫ −R

−n

f(x)e−2πixξ dx+

∫ n

R

f(x)e−2πixξ dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ −n

−∞

f(x)e−2πixξ dx+

∫ ∞

n

f(x)e−2πixξ dx

∣

∣

∣

∣

≤

∫ −R

−n

|f(x)| dx+

∫ n

R

|f(x)| dx

+

∫ −n

−∞

|f(x)| dx

∫ ∞

n

|f(x)| dx

≤

∫ −R

−∞

|f(x)| dx+

∫ ∞

R

|f(x)| dx

+

∫ −R

−∞

|f(x)| dx

∫ ∞

R

|f(x)| dx

< ǫ.

We have established then that

f̂(ξ) =

∫ ∞

−∞

f(x)e−2πixξ dx = lim
Rր∞

∫ R

−R

f(x)e−2πixξ dx = I

is a well-defined complex number (for each ξ ∈ R). That is, f̂ : R → C is a well-
defined function.

To see that f̂ is continuous, we consider for ξ1, ξ2 ∈ R and R > 0

f̂(ξ2)− f̂(ξ1) =

∫ ∞

−∞

f(x)e−2πixξ2 dx−

∫ ∞

−∞

f(x)e−2πixξ1 dx

=

∫ −R

−∞

f(x)e−2πixξ2 dx+

∫ ∞

R

e−2πixξ2 dx

−

∫ −R

−∞

f(x)e−2πixξ1 dx−

∫ ∞

R

e−2πixξ1 dx

+

∫ R

−R

f(x)
(

e−2πixξ2 − e−2πixξ1
)

dx.
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Given ǫ > 0, there is some R > 0 for which
∫ −R

−∞

|f(x)| dx+

∫ ∞

R

|f(x)| dx <
ǫ

3
.

Having fixed R, there is some δ > 0 such that for each x with |x| ≤ R there holds
∣

∣e−2πixξ2 − e−2πixξ1
∣

∣ =
∣

∣e−2πix(ξ2−ξ1) − 1
∣

∣ <
ǫ

3
(

1 +
∫∞

−∞
|f(x)| dx

) .

Therefore, if |ξ2 − ξ1| < δ

∣

∣

∣
f̂(ξ2)− f̂(ξ1)

∣

∣

∣
≤

∣

∣

∣

∣

∫ −R

−∞

f(x)e−2πixξ2 dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ ∞

R

f(x)e−2πixξ2 dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ −R

−∞

f(x)e−2πixξ1 dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ ∞

R

f(x)e−2πixξ1 dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ R

−R

f(x)
(

e−2πixξ2 − e−2πixξ1
)

dx

∣

∣

∣

∣

≤

∫ −R

−∞

|f(x)| dx+

∫ ∞

R

|f(x)| dx

+

∫ −R

−∞

|f(x)| dx+

∫ ∞

R

|f(x)| dx

+

∫ R

−R

|f(x)|
∣

∣e−2πix(ξ2−ξ1) − 1
∣

∣ dx

< ǫ.

This shows not only that f̂ ∈ C0(R → C), but in fact, f̂ is uniformly continuous
on R.1 �

Corollary 2 Under the hypotheses of Lemma 1, namely that f ∈ C0(R → C) and
for some A > 0

|f(x)| ≤
A

1 + x2
for x ∈ R,

we have that f̂ ∈ C0(R → C) given by

f̂(ξ) =

∫ ∞

−∞

f(x)e−2πixξ dx (6)

1This sounds somewhat impressive, but something rather stronger is true; see Exercise 2 below.

4



and f̂ is uniformly continuous on R.

We claim the negative sign in the power of the exponential in the formula (6) has not
been used in any essential way:

Lemma 3 If g ∈ C0(R → C) satisfies for some B > 0 a decay estimate

|g(ξ)| ≤
A

1 + ξ2
for ξ ∈ R,

we have that ǧ : R → C defined by

ǧ(x) =

∫ ∞

−∞

g(ξ)e2πiξx dξ (7)

1. is well-defined,

2. satisfies ǧ ∈ C0(R → C), and

3. also has ǧ is uniformly continuous on R.

While the formula (6) with the negative sign in the exponential gives the Fourier
transform of f , the formula (7) with the positive sign is called the Fourier inversion
formula or inverse Fourier transform. This formula is often written as

f(x) =

∫ ∞

−∞

f̂(ξ)e2πiξx dx

under the assumption that a function f̂ ∈ C0(R → C) is given—not necessarily the
result of applying the Fourier transform to a function f , but simply a given function
g = f̂ satisfying the hypotheses on g in Lemma 3.

In order to apply these formulas successively, we need also to know that the
resulting transformed function satisfies the required decay condition. We will obtain
the required estimate for the Fourier transform under somewhat more restrictive
conditions on the function f . More precisely, we will now consider restrictions of
certain holomorphic functions. For b > 0, consider the strip

Ω = {z ∈ C : | Im z| < b},

and consider holomorphic functions f : Ω → C satisfying for some A > 0 the uniform
decay estimate

|f(x+ iy)| ≤
A

1 + x2
for x, y ∈ R with x+ iy ∈ Ω. (8)
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This condition allows us to apply Lemma 1 to the quantity

f̂(ξ) =

∫ ∞

−∞

f(x)e−2πixξ dx

with the values of the restriction
f∣
∣

R

taken in the place of those of a function f ∈ C0(R → C) as posited in the lemma.
We can also use the values of f given by g(x) = f(x+ iy) along any other horizontal
line y = c for some c ∈ R with |c| < b. Then

ĝ(ξ) =

∫ ∞

−∞

f(x+ iy)e−2πixξ dx

gives a well-defined uniformly continuous function.

Lemma 4 (Theorem 2.1 in Stein and Shakarchi) For f : Ω → C holomorphic on the
strip and satisfying the decay condition (8) as described above, we have for each fixed
y with 0 ≤ y < b

|f̂(ξ)| ≤ πAe−2πy|ξ| for ξ ∈ R. (9)

It follows that for y > 0

|f̂(ξ)| ≤
B

1 + ξ2
for ξ ∈ R (10)

where

B =
πA

min{1, 2π2y2}
.

Exercise 1 Verify that for y > 0

e−2πy|ξ| <
B

1 + ξ2
for ξ ∈ R (11)

with

B = B0(y) =
1

min{1, 2π2y2}
,

and find the smallest value of B > 0 for which (11) holds. Note that

lim
yց0

B0(y) = +∞,
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Exercise 2 Show that any continuous function f ∈ C0(R → C) satisfying the decay
estimate (8) is uniformly continuous on all of R. Also show that any function g ∈
C0(R → C) satisfying the decay estimate

|g(ξ)| ≤ πAe−2πy|ξ| for ξ ∈ R

is uniformly continuous on all of R. Give a general decay condition for a continuous
function f ∈ C0(R → C) ensuring f is uniformly continuous on all of R.

Proof of Lemma 4: Applying the estimate (4) we obtain the desired estimate (9)
in the case y = 0.

For 0 < y < b and ξ > 0, we consider
∫

α

f(z)e−2πizξ

with α a parameterization of ∂R where R is the rectangular domain

R = (−R,R)× (−y, 0).

This path consists of four segments which we parameterize by αj for j = 1, 2, 3, 4
numbered counterclockwise starting with the bottom edge

α1(t) = t− yi for − R ≤ t ≤ R.

By Cauchy’s theorem, since f(z)e−2πizξ is entire, we have

4
∑

j=1

∫

αj

f(z)e−2πizξ =

∫

α

f(z)e−2πizξ = 0. (12)

Taking each portion of the integral in turn,
∫

α1

f(z)e−2πizξ =

∫ R

−R

f(t− yi)e−2πi(t−yi)ξ dt

=

∫ R

−R

f(t− yi)e−2πitξ dt e−2πyξ.

As mentioned above, the assertion of Lemma 1 applies to the function g(t) = f(t−yi)
in this case as well as the basic estimate (4) to give

lim
Rր∞

∫

α1

f(z)e−2πizξ = ĝ(ξ) e−2πyξ
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with |ĝ(ξ)| ≤ πA.

∫

α2

f(z)e−2πizξ =

∫ 0

−y

f(R + ti)e−2πi(R+ti)ξ (i) dt

= ie−2πiRξ

∫ 0

−y

f(R + ti)e2πtξ dt.

Therefore,

∣

∣

∣

∣

∫

α2

f(z)e−2πizξ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 0

−y

f(R + ti)e2πtξ dt

∣

∣

∣

∣

≤

∫ 0

−y

|f(R + ti)|e2πtξ dt

≤

∫ 0

−y

|f(R + ti)| dt

≤

∫ 0

−y

A

1 +R2
dt

=
Ay

1 +R2
,

and

lim
Rր∞

∣

∣

∣

∣

∫

α2

f(z)e−2πizξ

∣

∣

∣

∣

= 0.

lim
Rր∞

∫

α3

f(z)e−2πizξ = − lim
Rր∞

∫ R

−R

f(x)e−2πixξ dx = −f̂(ξ).

Finally,

∫

α4

f(z)e−2πizξ = −

∫ 0

−y

f(−R + ti)e−2πi(−R+ti)ξ (i) dt

= −ie2πiRξ

∫ 0

−y

f(−R + ti)e2πtξ dt
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so that
∣

∣

∣

∣

∫

α4

f(z)e−2πizξ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 0

−y

f(−R + ti)e2πtξ dt

∣

∣

∣

∣

≤

∫ 0

−y

|f(−R + ti)|e2πtξ dt

≤

∫ 0

−y

|f(−R + ti)| dt

≤

∫ 0

−y

A

1 +R2
dt

=
Ay

1 +R2
,

and

lim
Rր∞

∣

∣

∣

∣

∫

α4

f(z)e−2πizξ

∣

∣

∣

∣

= 0.

Substituting these calculations in (12) in the form

−

∫

α3

f(z)e−2πizξ =

∫

α1

f(z)e−2πizξ +

∫

α2

f(z)e−2πizξ +

∫

α4

f(z)e−2πizξ

we find
∫ R

−R

∫ R

−R

f(x)e−2πixξ dx =

∫ R

−R

f(t− yi)e−2πitξ dt e−2πyξ

+ ie−2πiRξ

∫ 0

−y

f(R + ti)e2πtξ dt

− ie2πiRξ

∫ 0

−y

f(−R + ti)e2πtξ dt,

and taking the limit as R ր ∞

f̂(ξ) = ĝ(ξ) e−2πyξ.

In particular,
|f̂(ξ)| ≤ πA e−2πyξ

as asserted in the statement of the lemma.
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Exercise 3 Show the same decay estimate (9) holds when ξ < 0 by computing

lim
Rր∞

∫

α

f(z)e−2πizξ

where α parameterizes the boundary of the rectangular domain R = (−R,R)× (0, y).

This exercise completes the proof of Lemma 4. �

Theorem 1 (Fourier inversion formula; Theorem 2.2 in Stein and Shakarchi) For
f : Ω → C holomorphic on the strip

Ω = {x+ iy : x ∈ R and |y| < b}

and satisfying the decay condition (8) namely for some fixed A > 0

|f(x+ iy)| ≤
A

1 + x2
for x, y ∈ R with x+ iy ∈ Ω

so that f̂ : R → C is well-defined by

f̂(ξ) =

∫ ∞

−∞

f(x) e−2πixξ dx,

we have

f(x) =

∫ ∞

−∞

f̂(ξ) e2πiξx dξ.

1 Paley-Wiener Theorem(s)

In this section we discuss Theorem 3.3 of Stein and Shakarchi. The first result we
state may be considered a modified version of Lemma 4 (Stein and Shakarchi’s The-
orem 2.1):

Theorem 2 (First Paley-Wiener Theorem) Assume f : C → C is entire and satisfies
the following decay conditions:

(i) There are some constants C > 0 and M > 0 for which

|f(z)| ≤ C e2πM |z| for z ∈ C. (13)
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(ii) There is some constant A for which

|f(x)| ≤
A

1 + x2
for x ∈ R. (14)

Then in addition to the basic assertions of Lemma 1 and Lemma 4 that f̂ : R → C

exists, satisfies f̂ ∈ C0(R → C), and us uniformly continuous on R, there holds

f̂(ξ) ≡ 0 for |ξ| ≥ M.

That is, supp f̂ ⊂ [−M,M ].

Note that the requirement that f is entire and that condition (13) holds globally on
the complex plane are nominally additions to the hypotheses of Lemma 4. On the
other hand, the strong decay assumption of (8) is only required to hold along the real
axis, so that is much weaker than the decay hypothesis required in Lemma 4.

We state now also a converse:

Theorem 3 (Second Paley-Wiener Theorem) Assume f ∈ C0(R → C) satisfies for
some A > 0 the decay condition

|f(x)| ≤
A

1 + x2
for x ∈ R.

Assume also that supp f̂ ⊂ [−M,M ]. Then there exists a holomorphic extension of
f to the entire complex plane and this extension f : C → C satisfies

|f(z)| ≤ C e2πM |z| for z ∈ C.
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