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This paper contains results of a somewhat varied nature, all obtained

from a detailed examination of a special class of surfaces. These results in-

clude a method for the isometric embedding of Riemann surfaces in space,

an application of this method for the construction of a hyperbolic surface in

space, and several criteria in the problem of type.

The first three sections are devoted to developing the necessary prelimi-

nary material. In §1 we give an intuitive picture of the embedding process,

and also the exact definitions to be used throughout the paper. §2 contains a

brief discussion of the surfaces to be considered, simply-connected covering

surfaces of the plane having only algebraic singularities over finite points,

which are denoted as surfaces of class A. A method is given for subdividing

these surfaces into sheets, this subdivision being the main tool for the embed-

ding. In §3 we define and study the Euclidean metric on the surface.

The embedding itself is carried out in §4, where we show how a large class

of Riemann covering surfaces can be represented isometrically as nonself-

intersecting surfaces in 3-space. The interest in the embedding method is

partly theoretical, since the existence of such an embedding is somewhat sur-

prising in itself, and partly practical, in the sense that by viewing a surface

in the imbedded form one often obtains a much better intuitive picture of its

internal structure.

The author has indicated at the 1954 International Congress [8] how this

embedding method could be used to settle a question on the existence of cer-

tain hyperbolic surfaces in 3-space. The details are carried out in §5 with

slight refinements so that the surface obtained is everywhere infinitely differ-

entiable. The method used here for removing the singular points may be used

in conjunction with the author's paper [9] to provide a different way of

settling the original question.

Finally, we turn to the problem of type for surfaces of class A. These

surfaces were originally considered by Ahlfors [l ] who introduced the func-

tion n(t) as a measure of the branching and found a sufficient condition for

parabolic type. §6 contains a number of new results on the use of the function

n(t) in the determination of type.
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1. Introduction. In this section we give first some intuitive notions about

the material to follow, and then state the precise definitions and notation

which will be used throughout the paper.

1.1. We start with a simple example. We are given the Riemann surface

of to1'2 and wish to embed it isometrically as an ordinary surface in 3-space.

To do so we consider the surface in the usual fashion as consisting of two

sheets, each a copy of the TO-plane slit along the positive real axis, which are

joined by crosswise identification. What we shall do is simply embed each

sheet separately in x, y, z-space in such a manner that the edges to be identi-

fied coincide. Roughly speaking, this is done by folding up each sheet fanwise

around the origin and then matching the edges. More precisely, choose one

of the two sheets and divide it up into eight 45° sectors with vertex at the

origin. Denote these by A\, • • • , A* in order of increasing argument starting

with the positive real axis. Let Li, ■ ■ ■ , Z9 be the edges of these sectors in the

same order, where Li and L9 lie on opposite edges of the slit along the posi-

tive real axis. We now place sector Ai in x, y, z-space in such a manner that

the edge Li coincides with the positive x-axis, and the whole sector projects

onto a 22^° sector in the x, y-plane. We then place the sector Ai so that its

edge Li coincides with the edge £2 of Ai, and so that the edge L3 lies in the

x, y-plane. Then Ai will also project onto a 22J° sector, and we may continue

the process, placing each of the sectors so that their common edges coincide

and so that they each project onto a 22|° sector. The edge L9 of .48 will then

lie along the negative x-axis and all eight sectors together will project onto

the upper half of the x, y-plane. The same procedure can be applied to the

other sheet of the surface so that it projects onto the lower half plane. We

now observe that the pair of edges lying along the positive x-axis and the

pair lying along the negative x-axis are precisely those which were to be

identified in the original surface. We may therefore glue the sheets back to-

gether along these edges and obtain a nonselfintersecting surface which was

derived from our original surface by a succession of foldings, and which is

therefore an isometric image of that surface with all inner properties left

invariant.

1.2. The main purpose of the next few sections is to show how this em-

bedding process may be carried out rigorously for a large class of simply-

connected surfaces. The idea is simply to divide the surface into sheets in

such a way that each sheet may be folded up fanwise in the above manner.

This allows us to place an isometric image of the sheet in x, y, z-space in such

a way that it projects onto an arbitrarily small sector of the x, y-plane. If

this intuitive picture is kept in mind it may help in following the details of

the decomposition carried out in the next section.
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The main application of this method is to the problem treated in §4. The

question is to prove the existence of a hyperbolic surface in 3-space satisfying

certain conditions. Rather than start with a surface and prove that it is

hyperbolic, our method is to start with a Riemann surface known to be hyper-

bolic and re-embed it in 3-space.

1.3. There is one other point which may be worth mentioning here in

connection with our method of embedding. It is clear that the surfaces of

wlln can be treated in a manner similar to that of w112, since we can make

each sheet project-onto a sector of angle 2ir/n in the x,y-plane. However, it

is also interesting that we may use this method to embed the surface of log w.

We need only start with an arbitrary sheet and fold it so that it projects

onto an angle of ir/4. The sheets immediately "above" and "below" may then

be placed on either side so that they each project onto an angle of 7r/16. The

next two are made to project onto angles of ir/32, and so on. The total surface

will then project onto a quarter plane, and it is clear that by choosing different

angles we could have made the total surface project onto an arbitrary sector.

The ideal boundary of the surface corresponds to the edges of this sector,

and the logarithmic branch point at the origin corresponds to the vertex.

This is not interesting from the conformal point of view in which the ideal

boundary is a single point, but it may be found useful in giving a clear intui-

tive picture of why a logarithmic branch point cannot be considered an in-

terior point of the surface. It seems that a number of beginning students of

Riemann surfaces have a great deal of difficulty in grasping this point.

1.4. We now proceed to give the exact definitions and notation which will

be used throughout this paper.

We shall use the standard Weyl-Rado definition of a Riemann surface as

a two (real) dimensional manifold with a complex analytic structure. For the

most part our interest will be centered on those Riemann surfaces which are

also covering surfaces of the plane. For the sake of uniformity we shall assume

throughout that they are covering surfaces of the complex w-plane. By this

we shall mean that there is associated with the surface a nonconstant analytic

function w = ir(p) from the surface into the w-plane. The function w is called

the projection function. We may speak of the derivative of an analytic func-

tion on a Riemann surface with respect to a given coordinate system, and the

points where the derivative ir' is zero are independent of the choice of co-

ordinate system. These points are called the branch points of the surface. All

other points of the surface have a neighborhood in which the projection

mapping is one-one. An arc C* on the surface is called a continuation of the

surface along an arc C in the plane, if C can be written as Tt(p(t)), where C*

is described by p(t). Once C and p(0) are fixed, C* is uniquely determined

unless it passes through a branch point. At a branch point of order n there are

exactly n possible continuations. (For further details connected with these

definitions see [3, Chapter IV].)
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1.5. In all that follows we shall be interested only in simply-connected

Riemann surfaces. These arise from the classical theory through the con-

sideration of the inverses of single-valued functions. We shall use the follow-

ing precise definition. Let w=f(z) be a single-valued function whose domain

of analyticity is a simply-connected region Q. We associate to the inverse

function z = g(w) a Riemann surface whose points are the set of ordered pairs

(w, z) such that w =f(z). As neighborhood patches we choose the sets of points

(to, z) whose z-values fill out an open disk in fl. The analytic structure is ob-

tained by assigning to each coordinate patch the corresponding disk under

the mapping (w, z)—>z. The projection function (w, z)—>w then makes this

Riemann surface a covering surface of the w-plane. (Classically one pictures

the surface to be spread out over the w-plane in such a manner that all points

(w, z) with the same TO-coordinate lie over the point with that coordinate in

the w-plane.) The surface so constructed is called the Riemann surface of the

function g(w).

1.6. Suppose now we start with a given simply-connected open Riemann

surface W which is a covering surface of the TO-plane. By the Koebe uniform-

ization theorem we can find a function z=<p(p) mapping the surface one-one

conformally onto a simply-connected region 0 of the z-plane. If we denote its

inverse by p=\p(z), then the composed mapping w=f(z)=iv\p(z) is single-

valued in Q. In general/(z) can be continued analytically outside of £2, but

in the case that fl is the precise region of analyticity of f(z), we can form the

Riemann surface W of the inverse function z = g(w) as above. Since both W

and W' are conformally equivalent to Q,, we can form the composed mapping

p—*(w, z), where z=<p(p) and w=f(z), which is a one-one conformal mapping

of W onto W preserving the projection function. Thus, in this case the orig-

inal surface W may itself be considered the Riemann surface of the function

g(w).

We may point out here that a given Riemann surface can be spoken of as

the Riemann surface of a function only if it is given as a covering surface.

1.7. We now note that by the Riemann mapping theorem the region fl

in the z-plane may be chosen to be either the whole plane or the interior of the

unit circle. The surface is then called of parabolic or hyperbolic type, respec-

tively. In the original problem of type one was given the Riemann surface

as a covering surface, and required to determine the type in terms of the dis-

tribution of branch points or other structural properties of the surface. In

§6 we are concerned specifically with this problem. The problem of type,

however, applies also to Riemann surfaces which are given in other ways,

and in §5 we consider a case where the points of the surface are those of an

ordinary surface in 3-space and the conformal structure is determined by the

Euclidean metric.

There is one final remark which should be made at this point. The interest

in the original problem of type was derived largely from the fact that the sur-
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faces considered were those of the inverses of either entire functions or func-

tions analytic in the unit circle. It was hoped that the classification of these

surfaces would lead to information concerning the corresponding classes of

functions. In actual fact, however, this procedure was reversed, and most of

the criteria of type were derived from theorems about single-valued functions,

such as Picard's, Bloch's, and Nevanlinna's. The paper of Ahlfors [l] repre-

sents one of the first attempts to derive information directly from the struc-

ture of the surface, and it is in this direction that we attack the problem in

§2, §3, and §6.

2. The Class A. Canonical subdivision.

2.1. Definition. A Riemann surface will be called of class A if it is a

simply-connected covering surface of the finite plane, and if all continuations

of the surface along an arbitrary arc which ends at a finite point of the plane

lead to an interior point of the surface.

Thus, a simply-connected covering surface is of class A if it has no bound-

ary points or nonalgebraic singularities over finite points.

If we are given a simply-connected covering surface W over the w-plane,

and assign to it the single-valued function w=f(z) as in 1.6, then the condi-

tion that W be of class A is that f(z) have no finite asymptotic values.

Namely, an asymptotic value is the end point of the projection of a path on

the surface which corresponds to a path in the z-plane going to the boundary.

Since the end point of such a path cannot be an interior point of the surface,

our definition precisely precludes its projection from being finite. Further-

more, in the case of a Riemann surface of class A, the region fi onto which it

is mapped is exactly the region of analyticity of f(z). Namely, if one could

extend f(z) to be even continuous at some point of the boundary of 12, then

a path leading to that point would produce a finite asymptotic value. Thus,

by the reasoning of 1.6, we see that the surface W may be identified with

the surface of the inverse function to f(z). In other words, the Riemann sur-

faces of class A are precisely the Riemann surfaces of the inverses to functions

which are single-valued and have no finite asymptotic values.

Some simple examples of functions whose inverses have Riemann surfaces

of class A are polynomials, sine and cosine, and the Schwarz triangle func-

tions. These last include cases of both parabolic and hyperbolic surfaces.

2.2. We introduce now a method of studying the structure of an arbitrary

surface of class A by means of a canonical dissection into sheets.

A sheet is constructed as follows. Starting with a copy of the w-plane, a

number of rays are removed, all the rays being radial with respect to some

given point which we shall call the center of the sheet. We require that only

a finite number of rays shall intersect any finite circle. Thus, in particular,

there are only a countable number of rays removed on each sheet. The points

remaining in the plane after the removal of these rays will be called interior

points of the sheet. We now add boundary points as follows. Let L be one of

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



222 ROBERT OSSERMAN [May

the rays which was removed. We assign two copies of L to the surface, de-

noting them by M and N. As a neighborhood base for points of M we choose

closed semicircles with diameter on M. These semicircles must not intersect

any of the other removed rays, and they must all lie on the side of L deter-

mined by the condition that each semicircle is intersected by all rays ob-

tained by clockwise rotation of L through a sufficiently small angle about its

end point. For neighborhoods of a point on N we choose the closed semicircles

with diameter on N, lying on the opposite side of L. M and N together will

be called a slit of the sheet, and they will be denoted separately as the edges

of the slit.

In what follows we shall represent an arbitrary Riemann surface of class A

as the union of sheets of the above type, with certain identifications. Every

sheet of the surface, except for at most one, will have the additional property

that one of its slits will have the center of the sheet as end point. We shall

refer to this slit as the fundamental slit of the sheet.

2.3. Our procedure will be to show first a specific method for constructing

Riemann surfaces of class A by combining sheets in a certain fashion, and

then to prove that one actually obtains all Riemann surfaces of class A by

this method.

In order to make the procedure clear, we illustrate with an example the

sort of construction which must be made.

First of all it should be noted that in order to embed each sheet of a sur-

face it will be necessary later on to fold it up fanwise about a branch point,

as was done for w1/2. Once a sheet is embedded, in order to attach further

sheets over common slits, these slits must be made radially with respect to

the branch point which is at the vertex of the fan.

Suppose now that we consider as an example the surface which has simple

branch points in each sheet over the points —1, 0, and +1. If the point —1

is the vertex of a sheet folded into a fan, then to attach the next sheet at 0,

we must make a slit from 0 to infinity, radial with respect to —1. But such

a slit passes through +1, so that we cannot simply identify the edges of the

slit in the two sheets. In fact, we must make this identification from 0 to

4-1 and leave the rest of the slit free to attach to the following sheet in order

to obtain the necessary branch point at +1. This explains the necessity for

introducing the points "p" and "q" in the general construction which follows.

We now proceed to the general case.

We start with an arbitrary sheet W0. To each slit L on Wo we assign a

finite number of sheets each of whose fundamental slit coincides with L.

These will be called the sheets of the first generation. The union of IFo and

the sheets of the first generation after certain identifications are made will be

denoted by Wi. Wi is not necessarily a surface in the strict sense, since it may

contain points (on the edges of slits) which have no neighborhoods homeo-

morphic to an open disk* Such points shall be referred to as boundary points
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and all others as interior points. We shall use the word surface in an extended

sense, allowing the existence of boundary points.

To avoid repetition we proceed immediately to the general inductive step

which describes how the approximating surface Wn is obtained from W„-i by

adjoining the sheets of the wth generation. We assume that

(a) Wn^-i is the union of at most a countable number of sheets.

(b) Every point of Wn-i has a neighborhood homeomorphic to an open

disk, with the following possible exceptions:

1. those points lying on slits other than the fundamental one on sheets of

the (n— l)st generation;

2. those points lying past a given point p which may have been distin-

guished on oneedgeof the fundamental slit on a sheet of the (n — l)st generation;

3. those points lying past a point q on one edge of a slit of a former genera-

tion if the point q has been identified with some point p of the type men-

tioned in 2.

(c) The points p must have been chosen so that every one is identified

either with a point q, or else with another point p lying on the opposite edge

of the fundamental slit of another sheet of the (n — l)st generation.

(d) Pairs of identified points, when considered as complex numbers in

the plane, must be equal.

Under these conditions we form the surface Wn and show that it has all

the same properties.

First of all, to each slit other than the fundamental one on sheets of the

(«—l)st generation we assign a finite number of sheets of thewth generation,

all having the given slit as fundamental slit. Let the given slit have edges

M and N, and let the fundamental slits on the new sheets have edges Mi

and Ni, i=l, 2, • • • , m. We either identify all points of M with the cor-

responding points of Ni, or else we make the identification only up to a given

point p. Similarly, for each i, i = 2, • • • , m, we identify either all of M,-_i with

all of Ni or else make the identification only up to a given point. The same

thing is done with Mm and N.

We now assign neighborhoods to the points obtained by identification. A

pair of identified points lying in the interior of an identified segment will

have as neighborhood basis all sufficiently small circles about them, each con-

sisting of the union of two semicircles whose common diameters have been

identified. Under the given identification the end points of all the m + 1 slits

involved will become a single point p0. A neighborhood in the neighborhood

base for po is the union of m + 1 sufficiently small equal circles around po, one

from each of the sheets containing p0, where the prescribed identifications

have been made along the edges of slits. One sees immediately that each such

neighborhood is homeomorphic to an open disk, by mapping the m + 1 slit

circles by successive branches of (w — WoYKm+l), where w0 is the complex

value of po.
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We now consider those boundary points of IF„_i which fall into the cate-

gories 2 and 3 of (b). Each of these is associated with a pointy on some sheet

of the (ra — 1 )st generation. To each such point p we have associated all points

past p on an edge of type M on some sheet, and all points past p on an edge

of type N of another sheet. These two rays from p do not form the two edges

of a slit, since they do not lie on a single sheet. However, if we assign to each

point p a finite number of sheets having these two rays as fundamental slit,

then the construction given above for attaching these sheets can be carried

out without change. The point p becomes an interior point in exactly the

same manner as the point po above. The surface thus obtained will be de-

noted as Wn. We see then that all boundary points of Wn-i have become in-

terior points unless they fall into one of the categories 2 or 3 of (b). The only

other boundary points are the edges of slits on sheets of the rath generation.

Thus Wn satisfies conditions (a), (b), (c), and (d), and the process may be

continued inductively.

If after a finite number of steps we arrive at a surface Wn having only

interior points, then the process is concluded. Otherwise we continue to ad-

join new generations of sheets, and the final surface IF is the union of all of

these. In the latter case we impose the additional requirement

(e) any path consisting of an infinite number of line segments joining to-

gether points of type p or po must have infinite total length.

2.4. We proceed now to prove that IF is a Riemann covering surface of

the plane.

First of all, we note that we have obtained a true surface. Namely, if the

process stops after a finite number of steps, then IFn = W has only interior

points and there is nothing to prove. In the general case, since IF is a union

of sheets, an arbitrary point pi of W must lie on some sheet. We need only

enumerate the cases to see that it will always be an interior point of W.

Namely, if it is an interior point of the sheet there is no question. If it is

the end point of a slit it becomes a point po and hence an interior point. The

only other possibility is that 'it lies on one edge of a slit, in which case I

claim that it must be either in the interior of an identified segment, or else a

point p. To see this, let us denote by L the edge of the slit containing pi, and

let pi be the end point of L. A finite number of sheets are adjoined at pi, and

on one of these there must be a slit having one edge identified with all or part

of L. Ii pi is not included in the identified part, then there must be a point p

between pi and pi. Repeating the reasoning for the part of L past this point

p we see that if the point pi is never identified with a point on another edge,

then there iriust be an infinite number of points p between pi and pi. But then

the path joining these successively will consist of an infinite number of seg-

ments having finite total length, which contradicts condition (e). Thus at

some point in the construction pi must have been either an interior point or

an end point of an interval of identified points, and in both cases it becomes

an interior point of IF.
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To each point of W we have thus assigned a set of neighborhoods, and

to each neighborhood an explicit homeomorphism onto an open disk in the

complex plane. Since two such disks are related either by the identity map

or a root, the structure thus assigned to the surface is analytic, and W thus

becomes a Riemann surface.

We next note that W is clearly a covering surface of the w-plane, where

the projection function is defined by assigning to each point its complex

value. This value is uniquely determined, since each point which does not

lie on a unique sheet must arise from identification of points on the edges of

slits, and this identification was only made between points having the same

complex value. By the choice of neighborhood systems on W, the projection

function is everywhere analytic. Those points which we have previously called

points p and po are the branch points of W.

2.5. We now show that W is simply-connected. We note first that if p is

an arbitrary branch point of W, and if the order of p is m + 1, then there are m

sheets of the same generation which have p as center, and a sheet of some

lower generation which contains p. Furthermore, on this latter sheet p is

not the center. We can therefore assign to an arbitrary point q of W, a polyg-

onal path Q leading to the center of Wo in the following fashion. If q lies

on a unique sheet, draw the line segment from q to the center of the sheet

on which it lies. If it lies on more than one sheet choose the sheet of lowest

generation. The center of this sheet being a branch point will lie on a sheet

of lower generation on which it will not be the center, and we may join it by

a line segment to the center of that sheet. Continuing this process we must

arrive in a finite number of steps at the center of Wo- If we are given an

arbitrary closed curve on W we can deform it homotopically to the center of

Wo by allowing each point q on the curve to move uniformly along the path

Q. More specifically, if the curve is given by q = q(0), a continuous map of

the unit circumference, then we can extend this map continuously over the

interior of the unit circle by mapping the radius of angle d by a uniform

stretching onto the path Q(d) corresponding to q(B), with the origin mapping

onto the center of Wo.

We thus see that W satisfies all the conditions for Riemann surfaces of

class A, except that it may have a nonalgebraic singularity over a finite

point of the plane. This means, in view of the fact that all surfaces of class A

will be shown to be representable in the above fashion, that our construction

yields a slightly larger class of surfaces. Since it is the representation in sheets

in the above manner which is of importance in our later proofs, we see that

these proofs, and in particular the embedding theorem, actually hold for

the larger class of surfaces. The important fact is that all nonalgebraic singu-

larities be at infinite distance along the surface, and that is guaranteed by

condition (e).

2.6. We must now show that every Riemann surface of class A is in fact

representable as a union of sheets in the manner described above. To do this,
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let IF be an arbitrary Riemann surface of class A, and assign to it, as in 1.6,

the function w=f(z), analytic and single-valued in the simply-connected

region ft. Let W be the Riemann surface of the inverse function z=g(w).

We have seen in 2.1 that IF and W may be identified. We shall now construct

a third surface IF" as a union of sheets, and show that all three surfaces are

conformally equivalent.

We start with an arbitrary point z0 of ft such that /'(zo) 5^0, and let

to0=/(zo). By the single-valuedness of/(z), there is a unique branch of g(w)

which assigns the value Zo to Wo. We may continue this branch analytically

to the boundary of an arbitrary circle | to — too| <P along every radius except

for at most a finite number. Namely, if we reached singularities along an

infinite number of radii, then these singularities would have a point of ac-

cumulation, and a path to this point of accumulation would correspond to a

path to the boundary of ft, in which case/(z) would have a finite asymptotic

value. We thus see that this branch of g(w) may be continued radially to

infinity in all except for at most a countable number of directions, and that

in each of these exceptional directions it must have encountered an algebraic

singularity. If we remove the rays from each of these singular points to in-

finity, we obtain the set of interior points of the sheet IFo. These interior

points form a simply-connected region which is mapped one-one conformally

by f(z) onto a simply-connected region H0 in ft, and which is therefore con-

formally equivalent to the region on IF' consisting of those points (to, z)

with z in Ho.

We wish now to extend our mapping to a topological map of the whole

sheet IFo onto Ho, the closure of Ho with respect to ft. We note first of all that

by the continuity of f(z), every point of the boundary of H0 must map onto

a point of one of the slits of IFo. Since the mapping is locally one-one and

conformal except at isolated points, the boundary of H0 must consist of piece-

wise analytic arcs. To each point other than the end point of a removed ray

L in the w-plane, correspond two distinct prime ends which we may identify

with the corresponding points on -the edges M and N. We can therefore ex-

tend the mapping to a one-one map between the boundaiies. To each prime

end of IFo corresponds a unique prime end of Ho. Furthermore, since the

boundary of Ho is piecewise analytic, each prime end corresponds to a single

point. Finally, we can show that no point of Ho corresponds to two distinct

prime ends. Namely, if this were so, then this point would correspond to two

distinct points of IFo under the mapping/(z). Since/(z) is single-valued, the

two points must lie on opposite edges of a slit. Suppose this were so, and let

the slit be L with end point b. If b is a branch point of order m, then in a

neighborhood of b, g(w) maps the edges M and N onto two distinct analytic

arcs making an angle of 27r/m at c=g(b). Our assumption now is that these

two arcs meet at a point d, interior to ft. But they would then bound a com-

pact subregion C of ft. If we draw an arc y from b to infinity in the interior
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of Wo, we can choose a branch of g(w) at b which maps y in a vicinity of g(b)

into C. Then the image of y, since it goes to the boundary of fi, must cross the

boundary of C. But the boundary of C consists uniquely of points which map

onto the ray L, which is a contradiction, proving the impossibility of two

distinct points of Wo mapping onto the same point of fi.

We now define the sheets of the first generation. To each slit L on Wo

whose end point b is a branch point of order m + 1, we assign m sheets, each

with fundamental slit along L. The function g(w) has m + 1 distinct branches

in the plane slit along L. One of these is the branch which maps the interior

of Wo onto Ho. Each of the other branches may be continued radially to

infinity from b in all except for at most a countable number of directions, and

repeating the same reasoning as before, we see that to each branch we may

assign one of the m sheets with suitable slits. Each of these sheets maps onto

a simply-connected region of fi whose boundary makes an angle of 27r/(m + l)

at g(b). If we number these regions in counterclockwise order around g(b) and

give the corresponding sheets the same order, then we see that the identifica-

tion of the edges Mi and Nj of the slit L described in 2.3 will precisely identify

points having the same image in the z-plane. This image is the analytic arc

obtained by continuing a particular one of the branches of g(w) along P. If

this branch may be continued analytically to infinity, then the entire edges

are identified. If we come to a branch point, then the identification is made

only up to this point, which then becomes a point p.

We thus obtain the surface Wi, and succeeding generations are adjoined

in precisely the same manner. If after a finite number of steps the surface Wn

maps onto all of fi, then we let Wn — W". Otherwise the image of each Wn

has a relative boundary in fi which corresponds to the slits on Wn and the

process can be continued, until we arrive after a countable number of steps

at the surface W" which is the union of all the Wn.

That W" must map onto all of fi may be seen as follows. Suppose Zi were

a point of fi not contained in the image of any Wn. Let y be an analytic arc

in fi joining z0 to Zi. The image of 7 under f(z) will be an analytic arc Y of

finite length starting at w0. Let Y* be that continuation of W" along Y

which maps into y. Since T* is not contained in any of the Wn, we can define

for each n, the point pn as the last point of Y* on a sheet of the wth genera-

tion, and Sn as the corresponding sheet. The point pn is on a slit P„, and all

the sheets of the (w+l)st generation which the part of Y* after pn can inter-

sect must have as center the end point of Ln. In particular, the center cn+i

of Sn+i must be in Sn for each n, so that if we denote by Qn the polygonal

path joining successive centers from cn down to Co, the length of Qn will be less

than the length of the part of T* up to pn, and hence less than the total length

of r*. (This is proved in 3.2.) Since this is true for all n, the length of the

polygonal path joining all c„ successively is also less than the length of Y*.

We have thus a path on W" which has finite length and joins an infinite
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number of branch points. If its image in the z-plane went to the boundary of

ft we would have an asymptotic value oif(z), and if not we would have a non-

algebraic singularity of IF. Since both cases are impossible, we have proved

that IF" maps one-one onto all of ft. By the conformal structure defined on

surfaces made of sheets, we see that this correspondence is conformal.

We thus have a one-one conformal map of each of the surfaces IF, IF',

IF", onto ft with the property that if a point on the surface corresponds to a

point z in ft, then its projection will be w=f(z). Thus, by composition we get

a one-one conformal mapping between each pair of surfaces, always preserv-

ing the projection function. We may therefore identify the surface IF" with

each of the other two, and thus obtain a decomposition of the original surface

into sheets.

3. The Euclidean metric on the surface. The purpose of this section is to

define what we mean by the Euclidean metric on a Riemann surface of class

A, and to investigate some of its properties. We shall need these results mainly

for §6.

3.1. Given an arbitrary curve on the surface as the continuous image of

the unit interval, we know that as a compact set it can intersect only a finite

number of sheets and slits. If the metric in each sheet is taken to be that of

the w-plane of which it is a copy, and if the part of the curve lying in the

interior of each sheet has a well-defined finite length, and also the part lying

on each slit has a well-defined finite length, then we define the total length

of the curve to be the sum of these. Otherwise we assign the curve infinite

length.

We see immediately that the length of any curve on the surface is greater

than or equal to the length of its projection in the w-plane.

3.2. From now on we shall use p to denote the center of the sheet IFo.

Given an arbitrary point q on the surface we can join it to p by a path Q as

described in 2.5. We shall denote the length of Q by L = L(q). We wish to

show that Q is the shortest path joining q to p.

We note first of all that if q is a point of IFo, then Q is the straight line

segment joining q to p, and any other curve on the surface joining q to p

will have a projection in the w-plane longer than Q. We proceed by induction,

assuming the statement is true for all points on sheets of the first ra — 1 gener-

ations, and proving it for points on sheets of the rath generation.

Let q be a point on a sheet Hn of the rath generation, and let the projection

of q in the w-plane be w. Let the fundamental slit of Hn be L, with end point c.

Then Hn is one of a finite number of sheets of the rath generation, each of

whose fundamental slit has the same projection as L and the same end point

c. If y is an arbitrary curve joining q to p it must cross one of these funda-

mental slits at a point qi which is simultaneously a point on a slit Li of a sheet

Hk of a generation k<n. Then by induction, the part of y from qi to p is at
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least equal in length to the path Qi, which starts with the straight line seg-

ment on Hk from qi to the center of Hk. But by radiality of the slit £1 with

respect to the center of Hk, and the fact that c lies on Li, this line segment

passes through the point c. Thus if we denote by Wi and w2 the projections of

ai and c respectively, we have L(qx) =L(c)-\-\ w2 — Wi|. If we further denote

by C the part of the path Qi joining c to p, we see that the path Q consists of

the straight line segment from q to c followed by the path C. Hence L(q)

= L(c) + \Wi — to[ ^L(c)+ I w2 — Wi| + | Wi — w\ =L(qi) + \ wi — w\. But the

right-hand side is less than or equal to the length of y, because the first term

is less than or equal to the length of the part of y from ffi to p, and the second

term is less than or equal to the length of the part of 7 from qi to q whose pro-

jection in the w-plane joins Wi to w.

We can therefore speak of the distance oi an arbitrary point q to the point

p as the length L(q) oi Q.

3.3. Given an arbitrary real, number /, the set of points on the surface

whose distance to p is less than / forms a simply-connected region, by the

same reasoning as in 2.5. Its boundary T(t) will therefore be a connected set

consisting of all those points at a distance / from p. We wish to investigate

more closely the structure of T(t).

We consider first those points of IFo whose distance to p is t. If the

w-coordinate of p is wc, then they will be the points of the circle | w —w0| =t.

T(t) can only intersect a finite number of sheets, since otherwise there would

be an infinite number of branch points at finite distance. On an arbitrary one

of these sheets, if its center c has distance h from p and has w-coordinate Wi,

then the set of points on the sheet whose distance from p is t will be the points

of the circle | to — TOi| =t — h. Thus T(t) will be a curve consisting of the union

of a finite number of these circles.

3.4. We shall now introduce a coordinate system on the surface by means

of which every point of the surface is uniquely defined by a single pair of

coordinates. To do this we start by fixing an arbitrary curve C from p to the

boundary, where we require only that no two points of C shall have the same

distance to p. For example, any ray from p to infinity lying in the interior of

IFo would do. If we start at any point q oi C, it must have some fixed distance

t from p, and we may follow along T(t) in the positive direction, i.e., that of

increasing argument of w —w0 for the part of T(t) on IF0. Since T(t) is con-

nected, we must after traversing it just once arrive back at q. We can then

assign to each point of T(t) its distance 5 from q along the curve T(t). Every

point of the surface is therefore uniquely determined by the coordinates

(t, s). Namely, (t, s) is that point on T(t) which is arrived at by following T(t)

in the positive direction a distance 5 from the (unique) point q on C which is

a distance / from the origin.

We shall make extensive use of these coordinates in Theorem 2 of §6.
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4. The embedding theorem.

Lemma. Let Li and Li be any two rays with the same end point, but not in the

same vertical plane in x, y, z-space. Let II be the plane through the common end

point of Li and Li, parallel to the x, y-plane. Let the sector bounded by Li and Li

project onto a sector A of II. Given an arbitrary sheet other than Wo of a Riemann

Surface of class A, we can embed it isom'etrically in x, y, z-space in such a

manner that it projects onto the sector A, and that the edge N of the fundamental

slit coincides with Li and the edge M coincides with Li.

Proof. We shall assume that the edges L\ and Li are so labeled that if a

ray sweeps out the given sector from Li to Li, then its projection will sweep

out 4 in the direction of increasing slope. We then divide sector A into three

parts by a pair of rays Pi and Ri from the vertex, where Ri is in the direction

of increasing slope from Pi. Let a be the angle between Li and Pi, B the angle

between Pi and Ri, and y the angle between P2 and Li. (The angle chosen

each time is that of the sector bounded by the given rays which projects

into 4.) Starting from the center of the sheet to be embedded we draw rays

Si, ■ • ■ , So in order of increasing argument as follows. Si and the edge N of

the fundamental slit are to bound a sector of angle a. So and the edge M of

the fundamental slit bound a sector of angle y. Si, • • • , 58 divide the sector

from Si to So into eight equal parts. Finally, we divide the sector from Pi to

Ri into eight equal parts by rays Pi to Tn.

The embedding of the sheet is done as follows. The sector bounded by N

and Si is placed in x, y, z-space in such a manner that N coincides with Pi,

and Si with Pi. Then the sector between Si and Si is placed so that Si coin-

cides with Pi and Si projects onto Pi. The next sector is then placed so that

its edge Si coincides with the position of Si just determined, and its edge St

coincides with P2. Succeeding sectors are placed in a similar manner, so that

each one projects onto a sector of angle /3/8. Then the edge So will coincide

with Ri, and the final sector is placed so that the edge So coincides with P2

and M coincides with Li.

This completes the embedding. The only condition that must be fulfilled

in order to carry it out is that the eight equal sectors in the sheet must have

angles greater than (3/8. But this can always be guaranteed by choosing Pi

and Ri sufficiently close together.

Theorem. Let W bea Riemann surface of class A. We assume that the sheets

of W have the following additional property. At least one edge of each slit, and

both edges of the fundamental slit, have an adjacent sector which does not intersect

any other slits on the sheet. Then W can be embedded isometrically as a surface

of the form z=/(x, y) where f(x, y) is single-valued and continuous.

Proof. We begin the embedding by placing the sheet Wo so that it coin-

cides with the x, y-plane. Since each slit has on one side of it a sector of some
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given angle disjoint from all the other slits, if we choose the subsector 5 of

half the angle adjacent to each slit, these subsectors will be mutually disjoint.

Let the angle of a given one of the sectors S be e. S is bounded by one edge,

say L, of a slit, and by another ray P. We then rotate 5 about the ray P until

it projects onto a sector of angle e/2. When this has been done for every sector

5, the sheet Wo is embedded so that no two points lie above the same point

of the x, y-plane, and so that the whole x, y-plane is covered except for at

most a countable number of sectors, one for each slit on Wo, over which suc-

ceeding generations will be placed.

The proof is completed by induction. We assume that the approximating

surface W„_i has been embedded isometrically, and we adjoin the sheets of

the »th generation. These sheets will be attached in such a manner that if no

two points of Wn-i project onto the same point of the x, y-plane, and if the

boundary of Wn-i consists of pairs of rays with common end point, then W„

will have the same properties.

We consider an arbitrary component of the boundary of Wn-i, which con-

sists of a pair of rays Pi and Z2 with common end point V. Since no two points

of W„_i project onto the same point, Li and L2 cannot lie in the same vertical

plane, and they must form a sector which projects onto a sector A in the hori-

zontal plane through V. We must then adjoin a finite number of sheets in the

manner described in 2.3. If there is only one sheet to be adjoined, the embed-

ding may be carried out by means of the lemma. In general, if there are m

sheets, we divide the sector 4 into m equal parts by rays Pi, • • • , Rm-i- We

then apply the lemma to Li and Pi, Pi and P2, • • ■ , POT-i and L2, in order to

embed the m sheets successively. As in the case of Wo we next choose mutu-

ally disjoint sectors adjacent to each slit on the sheets just adjoined. Further-

more, if along Li, Pi, Rt, • • ■ , Lit identification is to be made only up to a

point p, then we choose a sector adjacent to the part of the slit past p, dis-

joint from all the other sectors. Each of these sectors is then rotated about the

edge opposite the slit until it projects onto half of the original angle. We thus

achieve an embedding of Wn with the desired properties.

To show that the function f(x, y) describing the final surface is single-

valued we need only point out that any two points of the final surface must be

contained in Wn for some n, and Hence cannot project onto the same point of

the x, y-plane. That/(x, y) is continuous follows from the fact that every point

of the surface is either in the interior of a plane sector, on a common edge of

two such sectors, or else at a common vertex of a finite number of sectors.

This completes the proof of the theorem. There are still several remarks

which can be made about this method of embedding.

4.1. We may note first that the extra hypothesis on the structure of the

sheets is certainly satisfied if there are only a finite number of slits on each

sheet. This hypothesis is not a necessary one, since the embedding can be

carried out in many cases where the sheets are not so constructed. However,
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that some condition on the sheets is needed can be seen by observing that the

surfaces of the type constructed in Theorem 2 of §6 cannot be embedded by

our method.

4.2. As was pointed out in the introduction, the embedding method can

be extended to many cases of surfaces not of class A. For instance, it may

have logarithmic singularities, it may have a boundary at finite distance, and

need not be simply-connected, but only schlichtartig.

4.3. Even in cases where the embedding process cannot be carried out, the

general idea of it may be used in order to get a better intuitive picture of the

structure of the surface. The author has found it useful to consider successive

sheets to be placed in the form of closed-up fans along the slit to which they

are attached. This may be done for all surfaces of class A, the extra hypothesis

of our theorem being needed in order to allow us to "open up" the fans to

form an actual surface.

5. An infinitely-differentiable hyperbolic surface. If a surface in 3-space

is given by a function z=/(x, y), where/(x, y) is twice differentiable, then it

is known [5 ] that every point of the surface has a neighborhood which can

be mapped conformally onto an open disk in the complex plane. These neigh-

borhoods therefore define a complex analytic structure on the surface, in

terms of which we may consider the points of the surface, together with the

given mappings, to define an abstract Riemann surface. If the original surface

was simply-connected, it must then be conformally equivalent to either the

unit disk or the whole plane. The question arose whether every such surface

which covered the whole x, y-plane must be conformally equivalent to the

plane. The following theorem answers that question.

Theorem. There exists a surface of the form z=f(x, y), where f(x, y)is

defined, single-valued, and infinitely-differentiable over the whole x, y-plane

which can be mapped conformally onto the interior of the unit circle.

Proof. What we must show is that the given surface, when considered as a

Riemann surface, is hyperbolic. The proof proceeds in two steps. We start

with a particular hyperbolic Riemann surface of class A, and use a method

similar to that of the previous section to embed it isometrically as a surface

which is infinitely-differentiable everywhere except at the branch points. We

then show that this surface can be deformed in a sufficiently small neighbor-

hood of every branch point, so that it becomes everywhere infinitely-differen-

tiable while still remaining hyperbolic.

The surface we shall use is the following. We consider the points x„,

ra= +1, ±2, ■ • • on the real axis, where x„ = ra if ra<0, x„ = 2n if ra>0. The

surface has a simple branch point over the points x„, and is formed by attach-

ing sheets H„ to a fixed sheet Ho.

The sheet Ho consists of a copy of the w-plane with slits Rn, where each

slit Rn projects onto a ray from x„ to infinity lying in the upper half plane and
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radial with respect to the point — i. The sheet Hn has the single slit Rn and

is attached to Ho by crosswise identification over this slit. We thus obtain a

surface of class A which belongs to a class of surfaces proved by Potyagailo

[10] to be hyperbolic.

In order to make the desired representation of this surface we use the

following lemma.

Lemma 1. Given real numbers a, b, such that 0 < a ^ b ̂  27r, then one can con-

struct an infinitely differentiable surface S in x, y, z-space such that S is the

isometric image of a plane sector of angle b, the boundary of S coincides with the

boundary of a sector T in the x, y-plane of angle a, and there is exactly one point

of S over each point of T.

Proof. Introduce polar coordinates (r, #) in the x, y-plane, using the vertex

of the sector T as the origin. Then the points of T are given by di s=?? 2=$i+a.

We shall define an infinitely-differentiable function h(§) in this interval such

that 02s&(#)2il, and h(&i)=h(t)i+a)=Q.

For 5 we shall use a cone whose vertex coincides with that of T, and whose

generators are given by z = r tan h($) for each #. Thus z will be an infinitely

differentiable function of r, t? and hence of x, y. Finally, we shall arrange it so

that the generator of S sweeps out a total angle of b as # varies from di to

&!+a.

To do this we first introduce the function g(x) =e~1,xell(x~1), O^xgl,

where we set g(0) =g(l) =0. Then g(x) is infinitely differentiable, and all its

derivatives are 0 at x = 0 and x = 1. (Derivatives being taken from inside the

interval.) Furthermore, looking at the first derivative, one sees immediately

that g(x) is increasing for 0<x<l/2, and decreasing for 1/2<x<1. Its

maximum value is g(l/2) =e~*.

We now consider the unit sphere around the vertex of the sector T. The

points of this sphere are given by (#, <p), where <j> is the angle with the hori-

zontal. We define the function <p = h(i}), t?i^t?^#i+a, by h(d) =Xg(A"), for X

congruent mod 1 to (d —di)n/a. The parameters n and X will be fixed later,

subject to the conditions that ra is a positive integer, and O^jX^l. We note

that the function h will be essentially ra congruent copies of a compressed

function g placed over successive ^-intervals of width a/n.

We now wish to calculate the arc-length of the curve C: (p = h(§) on the

unit sphere. We have ds2 = cos2 <pdi}2-{-d<p2, and hence \dd>\ ^ds ^ \ d&\ + \ d<p\.

Since <f> goes from 0 to Xe-4 and then back to 0 in each interval ((m — l)/ra)a

gtf— #ig(m/ra)a, m = l, • • • , w, we have feds^ Jc\ dq>\ ̂ 2raXe~4.

We now fix ra so that 2ne~i^b, where b was the quantity given in the

hypothesis. For this value of ra the length of the curve C will depend only on

X and we shall denote it by L(\). When X = 0 we have <p = h(&)=0, and

ds =d&, so that L(0) =fcdd = a ^b. On the other hand, 1,(1) ^2ne~^ b. Hence,

since L depends continuously on X we can find a value of X for which L(\) —b.
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With n and X so chosen, we form the conic surface 5 with vertex at the

center of the unit sphere, and generated by the curve C on the sphere. Then

the total angle of S at the vertex will exactly equal the total length of C which

is b. Furthermore, we have one generator of S lying over every ray t? = constant

for t?i^#^#i+a, and 5 therefore satisfies the requirements of the lemma.

We now return to our surface W and complete the construction as follows.

From each point x„ we draw a ray R'n parallel to P„+i if »>0, and parallel

to Pn-i if n < 0. Let R'J be the angle bisector of the sector between R'„ and

R„. Then by the lemma, we can embed the sector between R'n and P„ so that

it projects onto the sector between R'„ and R'J, keeping the edge R'n fixed,

and making the other edge coincide with R'J. We can then (again by the

lemma) embed the sheet Hn isometrically so that it projects onto the remain-

ing sector between R'J and P„, and such that the edges to be identified with

the upper and lower edges of the slit P„ now coincide with Pn and R'J respec-

tively.

If this is done for each n, we obtain an isometric image of the surface W

as a surface S in 3-space which covers every point of the x, y-plane exactly

once. Furthermore, if S is given by z=/(x, y), then / is by construction

infinitely-differentiable everywhere, except possibly along the rays Pn, R^,

and R'J. However, at each point of these rays all derivatives are zero, and

/ is therefore everywhere infinitely-differentiable except at the points x„.

This completes the first step in the proof. We have now a one-one isometric

correspondence between 5 and the surface W. We shall denote this corre-

spondence by W = $(S). Furthermore, since IF is hyperbolic, there is a one-one

conformal mapping St of W onto the interior of the unit circle. The composed

mapping ^$ therefore defines a one-one correspondence between S and the

interior of the unit circle which preserves angles everywhere except at the

branch points, i.e., the points x„.

We now observe that if we make a small circle in the x, y-plane around

each of the x„, then by the Whitney extension theorem [13 ], we can construct

a function/i(x, y) which is everywhere infinitely-differentiable, and which is

equal to / in the exterior of these circles.

Let Si be the surface z =/i(x, y). Being everywhere infinitely-differentiable,

angles are uniquely defined on Si from its embedding, and we can define a

conformal structure on it using these angles. Si then becomes a Riemann

surface, and by virtue of the topological projection map onto the whole

plane, it is simply-ccfnnected. We wish now to show that the surface Si must

be hyperbolic provided the circles around the x„ are chosen sufficiently small.

We proceed as follows.

Let f„=^r(4>(x„)) be the images in the unit circle |f | <1 of the points xn

on S. Since there are only a finite number of these in any compact subset

|f| ^r<l, we may choose circles around each f„ such that the sum of the

angles subtended at the origin by these circles is less than ir. Corresponding
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to each of these circles is a region P„ of S. Choose the circles C„ around each

xn such that the projection on the x, y-plane of R„ includes the interior of C„.

We choose/i equal to/ outside the C„ and show that for this choice, the cor-

responding surface Si will be hyperbolic. To do this we use the following

lemma.

Lemma 2. Let W be a simply-connected Riemann surface. Let yo be an arbi-

trary simple closed curve on W, and let H be the set of all simple closed curves

separating 70 from the boundary. y0 will bound a simply-connected region fi on

W whose complement we denote by D. Given an arbitrary metric p on W, we

denote by A„(D) =ffnp2dxdy the area in p of D, and by L„(y) =fypds the length
in p of the curve 7.

Then a necessary and sufficient condition for W to be hyperbolic is that there

exist a metric p and ane>0, such that A„(D) is finite, and Lp(y) >efor all 7 in H.

(Note: the metric p is given relative to a fixed coordinate system, and

changes with the coordinates in such a manner that the above expressions

remain invariant.)

Proof. To see the necessity, assume that W is hyperbolic, and map it con-

formally onto the unit disk in the z-plane in such a manner that some point

of fi maps into the origin. Then the image of fi will include some circle \z\

= P>0. Let p be the metric corresponding to the Euclidean metric in the

z-plane. Then the area in p of D is less than ir, and the length in p of each 7

in H is greater than 27rP.

As for sufficiency, we show that if the length of all 7 in H is bounded

below by e>0 in a given metric, then either W must be hyperbolic, or else

the area of D is infinite. Namely, if W is parabolic we can map it onto the

z-plane, denoting the image of 70 by To. Let p be the metric in the z-plane

corresponding to the given metric on the surface. Since To is compact, it is

included in the interior of some circle \z\ =r0. Then for all r>ro, the circle

I z I = r corresponds to a curve 7 of H, and hence its length in p is greater than

t, i.e.,

« =  |       pds =   I     prdo,
J \z\-r Jo

/■ 2t /» tx nix

rdd J     p2rdd = 2vr I     p2rd&,
0 •'0 J 0

e2   rrl dr       rTl  C2r

- - g p2rdrdd.
£t J Ta     r       J ro   J 0

But the right-hand side is just the area in p of the annulus ra< \z\ <ri, and

it is bounded below by the left-hand side which tends to infinity as r: tends
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to infinity. Since this annulus corresponds to a subregion of D, the area of D

must be infinite, which proves the lemma.

We now complete the proof by constructing on Si a metric p which satis-

fies the requirements of the lemma. We define p = 0 for points where fi^f.

Where /i =/, so that Si coincides with the surface S, it is defined by the in-

duced metric of the unit disk via f =^$(5).

Let Ro be the part of 5 corresponding to | f | Sa 1/2, and So the part of Si

lying over the same portion of the x, y-plane. Then the area in p of Si — So,

being less than or equal to the area of the corresponding part l/2< |f | <1

of the unit disk, is finite. Thus, all that remains to prove is that the lengths

in p of all curves y separating So from the boundary are bounded uniformly

below by a positive number.

Let 7 be any such curve, and let 71 be its projection on S. By the definition

of p, the length of 7 is equal to the length of the part of 7 which coincides

with 71, and this in turn is equal to the length of the image of this part in the

unit disk. But 71 maps onto a curve C which separates | f | = 1/2 from | f | =1.

Thus, if f = re'*, then <p takes on all values from 0 to 2ir along C, and r>l/2.

Denote by E the set of values of <j> which are not included in the angles sub-

tended by the circles previously drawn about the points f„. Let D be the part

of C for which <p is in E. Then the image of D on S is included in the part of

71 which coincides with 7. Combining all these facts, we have for the length

in p of 7,

IM * /, I * I - /,(" + (£)■)"* * J> > 7 J> * 7'
6. The relation of branching to type. In this section we study the degree

to which the type of a surface of class A is determined by the amount of

branching, in so far as the branching is measured by the counting function

n(t).

6.1. Given a fixed point p on a Riemann surface of class A, we define n(t)

to be the number of branch points, including multiplicity, whose distance

from p is less than t. (See §3 for the definition of the distance.) The function

n(t) was introduced by Ahlfors [l] who proved that a sufficient condition for

parabolic type is

/"    dt- = 00.

tn(t)

This shows in particular that those surfaces of class A which are so weakly

branched that

(2) n(t) ^ log t

must all be parabolic.
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We first prove a similar theorem in which a weaker condition is proved

sufficient for parabolicity within a special subclass of surfaces of class A.

Theorem 1. Given a surface of class A which satisfies the additional condi-

tion that all its branch points project onto a bounded set of the w-plane, then it

will be parabolic provided that

JM    dt

or in particular, if

(2') n(t) ^ t log /.

Proof. We apply a theorem of Ahlfors [2] which generalizes his previous

result. Namely, in order to prove a surface parabolic, it is sufficient to find a

metric p on the surface such that if Y(t) is the curve all of whose points are a

p-distance t from a fixed point of the surface, and L„(t) is the length of this

curve in p, then

/"    dt- =   oo.    ,

L,(t)

The only condition on p is that there should be no boundary points at finite

distance.

To derive condition (1) for parabolic type, one need only choose the

Euclidean metric of the surface. In our case we choose the metric

where it is assumed that the projections of all the branch points lie in the

circle \w\ <R. If we denote by rm the p-distance from the origin to the branch

point am, then the curve T(t) is the union of a finite number of p-circles Cm,

m — \, 2, ■ ■ • , n(t), where Cm consists of those points of T(t) which lie in a

single sheet and have constant p-distance t — rm from am-

To find the length of Y(t) we consider an arbitrary one of the Cm, say C.

It lies in a single sheet of the surface, and hence may be considered as a plane

curve, all of whose points have a fixed p-distance from some point w0, \w0\ <R.

We may assume without loss of generality that Wo is real and positive, i.e.,

that Wo = i = 0. We consider first the case that C lies entirely outside of

|w| =R.

Let —ki be the point where C intersects the negative real axis, and kt be

the point where it intersects the positive real axis. In order to evaluate the

length of C we must first show that if the point w = ri9 traverses C, r will de-

crease monotonically from ki to ki as | #| goes from 0 to ir. This is equivalent to
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showing that as a point traverses | to| =r>R from right to left, its p-distance

to 5 increases. But suppose Wi= re*91, and w2 = re*92, where |t?i[ <|«?2| 2=t. H gi

is the geodesic from z,- to 5, then the part of g,- inside the circle | w\ ^R will

be a straight-line segment, while the part outside will correspond to a straight-

line segment S,- in the plane of log w. Examining the situation in this latter

plane we see that if S2 has greater slope than Si, then both parts of g2 are

longer than the corresponding parts of gi and the statement is clearly true.

On the other hand, if Si has greater slope than S2 we draw an auxiliary curve

from log Wi to log s, starting with a straight-line segment S3 parallel to S2,

and then followed by the image T3 of a straight-line segment in the w-plane.

The length of this curve will be at least as great as that of gi by the assump-

tion that the latter was a geodesic, but it will be less than that of g2, since S2

and S3 have equal length, while T3 is shorter than the corresponding part of g2.

What we have shown then, is that the total variation of r around the curve

C is just 2(&2 — ki). We therefore have for the length L of C,

/'   1       1        r   R\dw\       R r   ,     1 1      1
P\dw\   = < —     (\dr\  + r\d»\)

c J c      \w\ ki J c

< — (2(ki - ki) + 2ir£2) < 2(ir + 1)R — •
ki ki

Thus the length of such a curve depends not on the actual values of ki and

ki, but only on their ratio. However, this ratio can easily be estimated. Let r

be the p-distance from s to points of C. Choosing paths along the real axis

from —ki and ki to s, and using the fact that the latter is a geodesic, we have

T2i-R+s+(log ki — logi?), r = R — s + (log ki — logi?), and hence log &2 — log ki

^2s<2R, or k2/ki<e2R.

Hence we have for all the curves Cm that L„(Cm) <2(ir+l)Re2R = K. We

have actually only proved this in the case that the projection of C lies outside

the I w| =R. However, if it lies entirely inside \w\ —R, then C is a Euclidean

circle for which LP(C) <2iri?, and if it intersects \w\ =R, then by considering

separately the parts lying inside and outside, one obtains as above a uniform

bound K on its total length. Thus,

LP(t) = E Lp(Cm) < Kn(t),
m-l

and

/«   dt f"     dt

L,(t)      J      Kn(t)'

so that (1') implies (3) and hence the surface is of parabolic type.

6.2. A simple example of a parabolic surface of class A which satisfies the
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criterion of this theorem and not that of Ahlfors' original theorem is the

surface of arc sin w. Here the branch points all lie above +1 and — 1, and

n(t)~t+l.
Our next object is to show that except by restricting ourselves to special

subclasses of surfaces as in the previous theorem, we cannot improve upon

Ahlfors' original criterion. The following theorem shows that if we consider

all surfaces of class A, then condition (1) is the best possible.

Theorem 2. There exists a subclass of surfaces of class A containing surfaces

of both hyperbolic and parabolic type for which the divergence of f°°dt/tn(t) is both

necessary and sufficient for parabolic type.

Proof. We use the fact that the type of a simply-connected Riemann sur-

face is invariant under quasiconformal mapping [ll]. Our method will be

to construct a topological mapping of an arbitrary surface of class A onto a

surface whose type is known, and then investigate under what conditions the

given map will be quasiconformal.

Let W be a surface of class A. Let L(t) be the length of the curve Y(t)

defined in 3.3. Let

/"»    dt-= R g oo.
i    L(t)

We map IF onto the strip S: — <x> <x<R, O^y^lby assigning to the point

of IF with coordinates (t, s) (see 3.4) the point (x, y), where

(2) x = j dt/L(t),       y = s/L(t).

This maps each curve Y(t) onto a vertical line segment whose top and bottom

points are identified. The curve C maps onto the parts of y = 0 and y = l to

the left of x =P. The point p corresponds to — oo . By virtue of the map e2" we

see that the strip S is hyperbolic or parabolic according as R is finite or

infinite. But as is shown in [l], the integral in (1) converges and diverges

simultaneously with f°°dt/tn(t). Our problem is thus reduced to finding a

class of surfaces for which the auxiliary map (2) is quasiconformal. We shall

use surfaces constructed as follows, denoting them as surfaces of class B.

Let \rn\ be an arbitrary increasing sequence of positive numbers. We

denote by wn,k the points in the complex w-plane defined by \wntk\ =rn,

arg wn,k = (2k - l)ir/2", k = 1, • • • , 2"if n > 1,

arg wi,k = (k - l)ir/2, k - 1, 2, 3, 4.

The initial sheet IF0 of the surface will be the w-plane with center at the

origin and radial slits from each point wn,k to infinity. To each wn,k we associ-

ate a copy Wn,k of the w-plane with a single radial slit from wn,k to infinity.
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Adjoining each Wn.k to IFo by crosswise identification over the common slit

produces a surface IF of class A with only first order branch points over each

point wn.k- One can obviously make the order of branching arbitrarily large

or small by suitable choice of the sequence rn.

In order to map this surface onto the strip S, we choose for the point p

the origin of the sheet IFo. For C we choose the polygonal ray going first from

0 to rx along the real axis of IFo, and then from ri to — oo along the real axis

of IF1.1.

To compute the dilatation we introduce the following notation.

ra(r) =number of branch points for which \wn,k\ ^r,

n#(r) =number of branch points for which | w„,*| ^r, 0<arg w„,*2;#,

(3) L0(r) = contribution to L(r) coming from sheets Wn.k for which

0 < arg Wn.k 2= #•

We must consider separately the cases of points on IFo and points on other

sheets.

Case 1. Dilatation at a point of W0. Let w = re*9 be an arbitrary point on

IFo. Then its (t, s)-coordinates will be given by

(4) t = r,        s = ri} + La(r) + jr(r - ri),

where the first term in the expression for s comes from the part of L(r) lying

on IFo, and the last from the part on W\,\. Then by (2), we have

Cr   dt r& + La(r) + v(r - ri)
(5) x =   I    ->       y =-;

Ji   L(t) ' L(r)

and xr = l/Z,(r), xtf = 0, ye = r/L(r). This last is true because if r is fixed and

# varies sufficiently little, then Ld(r) remains constant.

To calculate the dilatation we obtain rectilinear coordinates by setting

ra = log r, v=&. Then xu = y, = r/L(r), x„ = 0. Hence we may compute the

dilatation a" as in [4].

i
P = *« + — y»,

t-7*.

and

|/>l + |g| 1 | , ,/        1 , Y/2
d = -j—j-j—j- = 1 + — | y„/xu |2 4- | yjxu \ ( 1 -j-| yu/xu |2)    .

\p\  - \q\ 2 \        4 /

This gives us the dilatation in terms of the (u, i»)-coordinates, but since
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the mapping r, d—m, v was conformal, it is also the dilatation in the w-plane.

Thus we see that the boundedness of the dilatation is equivalent to the

boundedness of the quantity |y«/xu|. But if y=/(x) is the equation of the

image in S of the line n = constant, i.e., of the ray # = constant, then yu/xu

=/'(x) —dy/dx. We turn now to the computation of this quantity.

We note first that we can write explicitly nd(r) = \&n(r)/2ir], where the

brackets denote the greatest integer contained in the enclosed expression. To

see that this is true, we note that na(r) is equal to the number of slits on Wo

which intersect \w\ =r between 0 and#. But the total number of slits inter-

secting \w\ =r is n(r), and these are distributed at equal intervals. In fact,

if rm^r <rm+i, there will be a slit at kir/2m for k = l, • • • , 2mtI.

Hence we have the inequality

(6) -»(r) - 1 < n,(r) g - «(r).
2ir 2ir

Suppose now we denote by zZ' the summation taken over all branch

points Wn,k for which \wn.k\ ^r, 0<arg wn,k^d. We then have

La(r) = 2ir £' (r —  \ wn.k | ) = 2ir I    n0(t)dt,
J o

(7)

L(r) = 27rr + 2w I   n(t)dt,
J o

where the first term is the contribution of IFo and the second term comes from

the other sheets.

We now assume t? to be fixed and use a prime to denote derivatives with

respect to r. Then by (4) and (7),

s' = 0 + L'*(r) + ir = 2t(— + n*(r) + —Y
\27T 2 /

and by (6),

2r(&c(1 + n(r)) ~j)<s- 2t(£ (1 + M(r)) + t)'

Furthermore, by (7),

L'(r) = 2x(l + n(r)).

Thus,

i? 1 s'      & 1
-<_g_-|-
2*-      2(1 + n(r))      V      2ir      2(1 + n(r))

and
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5'        # 1
(8) -<-

V      2ir   ~ 2(1 + n(r))

Similarly, we have by (4), (7), and (6), that

& d
— L(r) - w(r + ri) 2J s £ — L(r) + *(r - ri).
2ir 2ir

Hence,

&      f -\- fi      s       d      r — ri
-5; — <;— 4-,
2b-        2L L      2ir        2L

and

5       d 2r       r~L~2*   = H ~ ~L

Combining (8) and (9), we find

s'       s          s'      ■»          5       ^         1/1 2A
-<-+-<—(-+ —)■

V      L V      It L      2ir   ~  2 \1 + n(r)       L)

But since y = s/L, we have

, _Ls' - sL'      L' / 5'       s \

y =    Z2    =l~\i7~T)'

Further,

r*  dt ,1
X =   I     -> X   = —)

J1   L(t) L

and

^ = ̂  = z,Y---^
dx      x' \L'      L/'

Finally, since L'(r) =27r(l+ra(r)), we have that

dy /       1 2r\ /       m(r)\

m      ^s'(1 + "W)(m«+r)<2'(1+w)

where we have used that L(r) ^2irr>2r.

We may summarize our results so far as follows. The dilatation will be

uniformly bounded for points on the sheet IFo provided that the distribution

of branch points is such that

(11) m(r)/L(r) ^ M < 00.
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Case 2. Dilatation at a point of Wn,k. We consider now points of an arbi-

trary but fixed sheet Wn,k. If # = arg wn,k, we introduce on Wn,k the co-

ordinates

p = t — rn,        <b = arg (w — wn,k) — #

where arg (w — w„,k) is chosen so that 0^<j>^2r. We then obtain exactly the

same expression as previously for the dilatation in terms of the quantity

dy/dx, where y =/(x) is the equation of the image in S of the ray <b = constant.

Another analogous calculation gives us the inequality for this quantity,

dx \        L(t) )

where the left-hand side is evaluated at the point with coordinates (t, s).

Thus the dilatation will be uniformly bounded over the whole surface

provided that condition (11) holds. A somewhat easier condition to work with

is that there exist a constant K such that

(12) n(t) ^ Kn(t/2) for all t.

If this condition is satisfied we have

L(t)/2ir =  J    (1 + n(t))dt >  f   n(t)dt ̂  —n(t/2) ̂  ln(t)/2K,
Jo J tit 2

and

tn(t)      K

7(o" = 7'
Thus we see that the mapping defined by (2) is quasiconformal for all

surfaces of class B which satisfy condition (12). To conclude the proof of

our theorem all that remains to show is that among these there are surfaces

of both parabolic and hyperbolic type.

We note first that for all surfaces of class B, we have that

(13) rn g t < rn+i => n(t) =4 + 4 + 8+---+2" = 2"+>.

Consequently, if we choose the sequence rn such that

(14) r„ ^ 2r„_i for all n,

then for r„^/<rn+i, we shall have r„_i^</2, and

n(t) = 2"+> = 2w(rn_i) ^ 2w(//2).

Hence (14) implies that (12) holds with P = 2.

To make n(t) arbitrarily small we need only let rn increase sufficiently

rapidly, in which case (14) will be satisfied, so that there is no difficulty in
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obtaining parabolic surfaces. But choosing r„ = 2n+1 = 2rn_i satisfies (14), and

iorrn^t<rn+u we have by (13), n(t) =2"+1=rn+i/2>i/2, and

J00    dt r"  dt
-< 2 — < oo,
tn(t)         J       t2

so that this surface is hyperbolic.

This concludes the proof of the theorem.

6.3. We may note that the above construction incidentally provides us

with examples of hyperbolic surfaces with a much lower order of branching

than any previously known. In terms of the function n(t) we may formulate

our result as follows.

Corollary. Given an arbitrarily small e>0, there exist hyperbolic surfaces

for which n(t) ^f.

Proof. Choose r„ = 2(n+1)/«. Then r„ = 21/,rn_i and condition (14) is satis-

fied. But for rn^t<rn+u we have <<2<"+2>'« = 21'«2<n+1)'«, and by (13), 2n(t)

= 2-2n+1>/', so that

/"    di r"   dt-< 2 — <  00,

tn(t)         J      /1+«

and this surface is therefore hyperbolic.

On the other hand, for rn-^t<rn+i, we have /^2<n+1)'«=w(01'', and hence,

t'tn(t).
6.4. A natural question to ask is whether one can obtain a decisive cri-

terion for the type of surfaces of class A using only the growth of the function

n(t). The answer is no, since by the above corollary there exist hyperbolic

surfaces with n(t) <t112, while for the surface of arc sin to, n(t)>t. We might

mention that Myrberg claimed to have settled this question in [7]. However,

the surfaces he constructs are not of class A since they have interior points

over the point at infinity, and the part of the surface lying over the plane is

not simply-connected.

In view of this situation one might ask if it were at least possible to get

some general criterion for hyperbolic type involving only sufficiently large

growth of n(t). Again this turns out to be impossible, as the following example

shows.
Let Hn, ra = 0, ±1, ±2, • • • , be a copy of the w-plane slit along the real

axis from — oo to a„, and from bn to +«>, where an<bn and a2n = a2n_i,

bin = bin+i. By crosswise identification over the common slits of successive

sheets one obtains a surface IF of class A which in the case of a„= — 1,

&„= +1, for all ra, reduces to that of arc sin to.

It has been proved in two different places ([6] and [12]) that all surfaces

formed in this way are parabolic. But it is immediately clear that given any
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increasing function/(/), we can choose the lengths of the segments (an, bn)

to decrease sufficiently rapidly so that n(t)>f(t). Thus there exist parabolic

surfaces with n(t) arbitrarily large, and any sufficient condition for hyper-

bolic type must either be restricted to a special class of surfaces, or else in-

volve an added condition.
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