
Algebra Comprehensive Exam Notes
Revised: January 5, 2019

Topics Index

1 Group theory 2
1.1 Basics and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Some standard examples of groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Fundamental theorems on groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

A few representative problems from past comprehensive exams . . . . . . . . . . . . . . 8
1.4 Group actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Fundamental theorem of finitely generated abelian groups . . . . . . . . . . . . . . . . . 10
1.6 Misc results on groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Some classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Ring theory 12
2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Representative questions from past comprehensive exams . . . . . . . . . . . . . . . . . 14
2.3 Other topics on rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Irreducible polynomials 19
3.1 Irreducibility criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Towards field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Field theory 21
4.1 Basics and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Splitting fields of polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 More on cyclotomic polynomials and their extensions . . . . . . . . . . . . . . . . . . . 24

5 Galois theory 25
5.1 Some preliminary and motivating examples . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 The fundamental theorem of Galois theory . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Finite fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 Special Galois groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.5 Galois groups of polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Polynomials of degree 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Polynomials of degree 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Polynomials of degree 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.6 Practice problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Solutions to other assigned problems 31

7 More practice problems from past exams 35
7.1 Problems specific to modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2 Fall 2017 exam problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.3 Spring 2017 exam problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.4 Spring 2016 exam problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.5 Spring 2015 exam problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.6 Problems from other previous exams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1



1 GROUP THEORY

1.1 Basics and definitions

Definition 1.1 (Groups). A group is a set G which is closed under the group operation ∗ which satisfies
the following properties:

(a) (Associativity) For all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).

(b) (Identity) There is an element 1 ∈ G such that g ∗ 1 = 1 ∗ g = g for all g ∈ G.

(c) (Inverses) For all g ∈ G there is an element g−1 ∈ G such that g−1 ∗ g = g ∗ g−1 = 1.

An abelian group is a group whose group operation is commutative: h ∗ g = g ∗ h, or equivalently
ghg−1 = h, for all h, g ∈ G. A subgroup H of G (written H ≤ G) is a subset of G which is closed under
the same group operation ∗. The subgroup criterion states that H ≤ G iff H is a non-empty subset of
G closed under the group operation such that xy−1 ∈ H for all x, y ∈ H.

Definition 1.2 (Normal subgroups). The operation of conjugation can be performed by taking H ≤ G
and any fixed g ∈ G and then forming the set

K := gHg−1 =
{
ghg−1 : h ∈ H

}
.

The resulting set K is a subgroup of G (K = gHg−1 ≤ G) for any g ∈ G. We note that conju-
gate elements and conjugate subgroups have the same order. Moreover, for any K ≤ G and any
g ∈ G we have that K ∼= gKg−1. A normal subgroup H of G (written H E G) is a subgroup of
G such that gH = Hg, or equivalently gHg−1 = H, for all g ∈ G. A simple group has no non-
trivial normal subgroups of itself, i.e., other than {1} and G itself. For p prime, Z/pZ is simple
(and these are the only abelian simple groups).

Example 1.3 (Fall 2014, #1). Show that a group of order 80 cannot be simple.

Properties of normal subgroups. If a group of generators {g1, g2, . . . , gn} ⊂ G for G is known, to check if

N E G it suffices to check only that these generators normalize N : giNg
−1
i ⊆ N for all i = 1, 2, . . . , n.

The conjugate subgroups formed by conjugation of the elements h ∈ G by all other g ∈ G (cf. the
conjugacy class of an element of G) partition G. In fact, we have that normal subgroups are precisely
unions of conjugacy classes of G in that if H E G, then for every conjgugacy class C of G that either
C ⊆ H or C ∩H = ∅. Every subgroup of an abelian group is normal. Similarly, every subgroup of a
cyclic group is cyclic and hence normal. Quotient groups of a cyclic group are also always themselves
cyclic.

Example 1.4 (Fall 2014, #6). Let G be a group of order 140 and H be a subgroup of index 4. Show
that H is normal in G.

Proposition 1.5 (When a quotient is a group). If H E G, then G/H is a group.
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Proposition 1.6 (Commutativity between non-intersecting normal subgroups). If H,K E G and
H ∩ K = {1}, then hk = kh for all h ∈ H and k ∈ K. In other words, the elements in two normal
subgroups of G that only share the identity in common commute.

Proof Sketch. Let h ∈ H and k ∈ K be arbitrary. We need to show that hk = kh, or equivalently that
hkh−1k−1 = 1. Since H ∩K = {1}, it suffices to show that hkh−1k−1 = h(kh−1k−1) ∈ H and also that
hkh−1k−1 = (hkh−1)k−1 ∈ K. By the normality of H and K and the closure of subgroup elements
under the group operation, this is clearly the case.

Definition 1.7 (Centers, centralizers, and normalizers). The center of G is defined as

Z(G) := {z ∈ G : gz = zg, ∀g ∈ G}.

The center Z(G) is always a normal subgroup of G. Also, H ≤ Z(G) ≤ G implies that H E G.
In somewhat more general analog, the centralizer in G of a set S is defined to be

CG(S) := {z ∈ G : sz = zs, ∀s ∈ S}.

The centralizer CG(G) = Z(G) is a subgroup of G. Moreover, we can see by a simple computation that
Z(G) E CG(S) for any S ⊆ G. Even more generally, the normalizer of S in G is defined to be the
subgroup

NG(S) := {z ∈ G : zS = Sz ⇐⇒ zSz−1 = S}.

Clearly, we have that CG(S) ≤ NG(S). When G is abelian we have the equivalences Z(G) = CG(A) =
NG(A) for any subset A ⊆ G. More generally, we have that CG(A) ≤ NG(A) ≤ G.

Example 1.8. Prove that G/Z(G) cyclic =⇒ G is abelian.

Proof. Since G/Z(G) is cylic there exists a generator g ∈ G such that ∀h ∈ G, h · Z(G) = gn · Z(G)
↔ h−1gn ∈ Z(G) for some n ∈ Z. Now let h, k ∈ G. We need to show that hk = kh. By the above
argument, ∃M,N ∈ Z and z1, z2 ∈ Z(G) such that h = z1g

−N and k = z2g
−M . This implies that

hk = z1z2g
−(M+N) = kh = z2z1g−(M +N).

Example 1.9. Prove that if G is a group such that 2 | |G|, then #{elements of G of order-2} is odd.

Proof. We first notice that for all a ∈ G, |a| = |a−1|. We also have that we can selectively pair inverses
as the disjoint union

H := G \ {e} =
⋃
g∈G
g 6=g−1

{g, g−1}.

Now we know that e ∈ G has order of 1 6= 2, so that X := {g ∈ G : g2 = e, g 6= e} satisfies that |X| is
even. Now we see that X ⊂ H where |H| = |G \ {e}| is even.

Example 1.10 (Spring 2016, #4). Let G be a finite group, and let H be a proper subgroup of G.
Prove that the union of all conjugates of H is a proper subgroup of G. Show that the conclusion need
not be true if G is infinite.

1.2 Some standard examples of groups

Example 1.11 (Dihedral groups). The dihedral group D2n corresponds to symmetries of rigid motions
of a regular n-gon in the plane. These groups have the presentation

D2n =
〈
r, s | rn = s2 = 1, rs = sr−1

〉
=
〈
r, s | rn = s2 = (rs)2 = 1

〉
.
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For fixed n ≥ 2, in these groups we have that 1, r, r2, . . . , rn−1 are all distinct elements (rotations
through multiples of 2π/n radians), s 6= ri for any i (reflections about the center point of symmetry),
and the inversion identity that ris = sr−i for i ∈ Z. Since D2n = {1, r, . . . , rn−1, s, sr, . . . , srn−1}, we
see that each element of the order-2n dihedral group can be written uniquely as skri for some k ∈ {0, 1}
and 0 ≤ i < n.

Example 1.12 (Symmetric and alternating groups). Given any set Ω 6= ∅, we write SΩ to denote
the set of all bijections (or permutations) of the set Ω onto itself. In the special case where Ω :=
{1, 2, 3, . . . , n} we commonly write Sn to denote the symmetric group on n elements. We see by a
simple counting argument that |Sn| = n!. The group Sn is non-abelian for all n ≥ 3. Within the
symmetric group Sn, disjoint cycles commute, the order of a permutation is the lcm of the lengths of
the cycles in a permutation’s cycle decomposition, and inverses are easily expressed by cycle reversion
(as shown in the following example in S13):

σ = (1 12 8 10 4)(1 13)(5 11 7)(69) =⇒
σ−1 = (4 10 8 12 1)(13 2)(7 11 5)(96)

[(1532)(46)]−1 = (2351)(64).

Also, there are the identities that give us the explicit expansions:

(a1a2 · · · am) = (a1am)(a1am−1) · · · (a1a3)(a1a2)

(ab)(ac) = (acb)

(ab)(cd) = (abc)(bcd)

(abc) = (ab)(de)(de)(bc)

(ij) = (1i)(1j)(1i).

If σ = (a1 · · · ak1)(b1 · · · bk2) · · · ∈ Sn, then conjugation by any other element τ ∈ Sn corresponds to the
cycle decomposition

τστ−1 = (τ(a1) · · · τ(ak1))(τ(b1) · · · τ(bk2)) · · · .

Two elements of Sn are conjugate iff they have the same cycle type decomposition. Note that S2
∼= Z/2Z

and A3
∼= Z/3Z (and hence is cyclic).

Important subgroups: The alternating group on n elements, An, is the subgroup of Sn consisting
of only the even permutations in Sn. Consequently, we see by the first isomorphism theorem (An is
the kernel of the sign function ε→ {±1}) that |An| = 1

2
· |Sn| = n!

2
. Key properties of the alternating

subgroups include that An E Sn and that for n ≥ 5, An is a non-abelian simple group.

Generators and presentations:

• Sn = 〈(12), (123 · · · n)〉;

• Sn = 〈(12), . . . , (1n)〉

• The 3–cycles generare An;

Example 1.13 (Spring 2018, #1). Let H be the subgroup of S6 generated by (16425) and (16)(25)(34).
Let H act on S6 by conjugation. Show that the set

Σ = {(12)(35)(46), (13)(24)(56), (14)(25)(36), (15)(26)(34), (16)(23)(45)},

is invariant under H, thereby defining a homomorphism φ : H → S5. Show that φ is an isomorphism.

Example 1.14 (Good examples of small groups). We also have the following isomorphisms of groups
(good to know these to build up a knowledge base of small examples):
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• S2
∼= Z/2Z and A3

∼= Z/3Z (cyclic subgroup)

• D6
∼= S3;

• GL2(F2) ∼= S3;

• S3 � Z/6Z;

• Aut(Z2 × Z2) ∼= GL2(Z2) ∼= S3;

• Aut(Zn) ∼= (Z/nZ)×, which has order φ(n);

• For p prime, (Z/pZ)× is cyclic;

• Aut(Z/qZ) ∼= (Z/qZ)× ∼= Z/(q − 1)Z whenever q is prime, For any n ∈ N, Aut(Z/nZ) ∼=
(Z/nZ)× ∼= Z/φ(n)Z where φ(pk) = pk − pk−1.

• If G has prime order, then G ∼= Z/pZ .

• We have that 〈s〉 E 〈s, r2〉 E D8 since both containments are of order 2 and hence normal,
but 〈s〉 5 D8 as conjugation by r in D8 sends s 7→ rsr−1 = r2s /∈ 〈s〉.

• Q2 is NOT a field: (0, 1) · (1, 0) = (0, 0) (it has zero divisors)

• A field with exactly 2017 elements of order 2: D2·2017.

Example 1.15 (The Klein 4-group). The Klein 4-group (Vierergruppe) is given by V ∼= Z2 × Z2 . It
also has the presentation

V =
〈
a, b | a2 = b2 = (ab)2 = 1

〉
V4 =

〈
a, b | a2 = b2 = 1, ab = ba

〉
.

The group has several representations by permutations in S4. The most interesting of these is given by

V = {e, (12)(34), (13)(24), (14)(23)},

which happens to be normal in A4 (also V E S4). In this particular permutation representation (the
rest of such representations are not normal subgroups), we have written V as the kernel of a surjective
group homomorphism from S4 → S3.

Example 1.16 (Matrix groups). Let the general linear group of degree n be defined by

GLn(F ) := {A : Ais a n× n matrix with entries in F such that det(A) 6= 0},

for some field F . The set GLn(F ) forms a (non-abelian) group under matrix multiplication. Typically
we draw the coefficients of the matrices in GLn from a finite field, Fpn . If |F | = q <∞ is a finite field,
then the order of the general linear group is given by

|GLn(F )| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1).

A related normal subgroup that comes up in the definition of the kernel of the determinant function
is the special linear group SLn(F ) consisting of the matrices with elements in the specified field whose
determinant is one. The special case of SL2(R) is related to Möbius transformations in the plane and
their interpretations as 2× 2 real matrices.
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1.3 Fundamental theorems on groups

The order of a group is the number of elements of the group (either finite or infinite). Similarly, we
can define the notion of the order of an element g ∈ G as the smallest positive integer power n ≥ 1
such that gn = 1. If n is the order of some g ∈ G, then the subset 〈g〉 = {1, g, g2, . . . , gn−1} is the
cyclic subgroup of G generated by g. For any element x ∈ G, the subgroup 〈x〉 is the unique (!)
minimal element of the set of all subgroups of G containing x (ordered by inclusion). The cyclic group
of order n, denoted Zn or Z/nZ, can be regarded as equivalent to addition modulo n.

Theorem 1.17 (Lagrange). Let the order of G and/or g ∈ G be respectively denoted by |G| = ord(G)
and |g| = ordG(g). Then the order of a subgroup (element of G) divides the order of G for any group
G.

Note that only a partial converse to this theorem is true. That is to say, that there is not necessarily
a subgroup of order n for any divisor n | |G|. When the divisors of the order of a group G are prime, or
even better powers of a prime, we have more to say about the existence of subgroups of these specified
orders.

Theorem 1.18 (Cauchy). If p is prime and p | |G| is a divisor of the order of G, then there is some
subgroup H ≤ G such that |H| = p.

Definition 1.19 (p-Subgroups and Sylow subgroups). For prime p, a Sylow subgroup is a so-called
maximal p-subgroup whose order is the power of the prime p, or equivalently by Lagrange’s theorem,
whose elements all have order of pk for some k ≥ 1. For example, consider the cyclic group G :=
{g, g2, g3, g4 = 1} of order p2 when p := 2. Since the definition of the p-subgroup involved requires
maximality, we see that G is itself a Sylow subgroup, but that the subgroup H := {1, g2} is not Sylow
by a contradiction to maximality.

Theorem 1.20 (Sylow’s three theorems). The following results are known as Sylow’s theorems:

I. If |G| = pa ·m for some prime p where p - m, then there is a Sylow subgroup H ≤ G of order
|H| = pa.

II. Let H,K both be Sylow p-subgroups as above, i.e., |H| = |K| = pa. Then these two subgroups
are conjugate: ∃g ∈ G such that gHg−1 = K. If there is a unique Sylow p-subgroup H with
|H| = pa, then it is necessarily normal in G: gHg−1 = H for all g ∈ G (Proof: If np = 1,
then |gPg−1| = |P | =⇒ gPg−1 ∈ Sylp(G)).

III. Let np denote the number of Sylow p-subgroups for p a prime divisor of the order of G. Then
we have that (i) np | m; (ii) np ≡ 1 (mod p); and (iii) for P any Sylow p-subgroup of G
np = [G : NG(P )] = |G|/|NG(P )|, or equivalently, |NG(P )| = |G|/np.

The intersection of any two distinct Sylow p-subgroups is 1. Also, if H ∈ Sylp(G) and K ∈ Sylq(G) for
p 6= q two distinct primes dividing the order of G, then all of the elements of H commute with all of
the elements of K.

Exercise 1.21. Find all Sylow subgroups of the Dihedral group D12.

Example 1.22 (Spring 2014, #1). Suppose G is a group with |G| = 60 and that |Z(G)| is divisible
by 4. Show that G has normal subgroup of order 5.

Example 1.23 (Fall 2012, #2). Let G be a group of order p2q where p, q are distinct primes. Prove
that G has a non-trivial normal subgroup.

Lemma 1.24. If N E G and P ∈ Sylp(G) and P E N , then P E G.
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Example 1.25 (All groups of order 45 are abelian). If |G| = pq for p < q primes and q 6= 1 (mod p),
then G is cyclic.
Short Proof: Since p, q are primes dividing the order of the group, by Cauchy there are subgroups P
and Q with these respective orders. Moreover, P = 〈a〉 and Q = 〈b〉 for some a, b ∈ G since p and q
are prime. Now |ab| = lcm(|a|, |b|) = pq = |G| =⇒ G = 〈ab〉.
Definition 1.26 (Group homomorphisms). Given two groups G,H, a group homomorphism, φ : G→
H is a mapping between the groups which preserves the group structure: for all g1, g2 ∈ G φ(g1g2) =
φ(g1)·φ(g2) where the right-hand-side product corresponds to the group operation in the range space H.
An isomorphism is a homomorphism which is bijective (the two groups are isomorphic, G ∼= H, if an
explicit isomorphism can be exhibited between the two groups). The kernel of a group homomorphism,
Ker(φ), is defined as the normal subgroup of G given by

Ker(φ) := {g ∈ G : φ(g) = 1}.

A group homomorphism is injective iff Ker(φ) = {1} . Other properties of homomorphisms include:

(1) φ(g−1) = φ(g)−1; (2) φ(gn) = φ(g)n; and (3) φ(1G) = 1H . The next isomorphism theorems provide
key relations between the groups involved in the definition of a group homomorphism.

Theorem 1.27 (The first isomorphism theorem). If φ : G → H is a group homomorphism, then
G/Ker(φ) ∼= Im(φ). We also have that Ker(φ) E G and Im(φ) ≤ H are both subgroups.

Example 1.28. There is NO injective homomorphism from D12 → S4. If there were such a map, then
by the First Isomorphism Theorem, we would have that D12 is isomorphic to some subgroup of S4. But
D12 has an element r or order 6, and by considering the cycle decompositions of S4 there is no such
element in this group (in particular, there cannot be a 2-cycle, a 3-cycle, or a 6-cycle as there are not
enough letters in the group to permute).

Example 1.29. For F a field, prove that GLn(F )/ SLn(F ) ∼= F ∗.

Proof. Since F is a field, we notice that this is equivalent to showing that GLn(F )/ SLn(F ) ∼= F \ {0}.
We exhibit the explicit homomorphism (NOTE: Should show that this is a homomorphism.) ϕ :
GLn(F )→ F ∗ defined by M 7→ det(M). Then

Ker(ϕ) = {M ∈ GLn(F ) : ϕ(M) = 1} = SLn(F ).

And by the First Isomorphism Theorem,

GLn(F )/Ker(ϕ) ∼= Image(ϕ) = F \ {0}.

Theorem 1.30 (The second isomorphism theorem). Let S ≤ G and N E G. Then

(1) SN ≤ G;

(2) S ∩N E G;

(3) (SN)/N ∼= S/(S ∩N).

Proposition 1.31 (The class equation). We denote representatives for the distinct conjugacy classes
of the group G by xi. Then we have that

|G| = |Z(G)|+
n∑
i=k

[G : CG(xi)].

Consequences of the class equation. The following are consequences of the class equation:

• If p is prime and |P | = pα for some α ≥ 1, then P has a non-trivial center: Z(P ) 6= 1.

• If |P | = p2 for some prime p, then P is abelian. More precisely, P ∼= Zp2 or P ∼= Zp × Zp.
Proof Sketch: Z(P ) 6= 1 =⇒ P/Z(G) is cyclic =⇒ P is abelian.
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A few representative problems from past comprehensive exams

Proof Technique: (Subset containment): To show two sets are equal (A = B) show that A ⊆ B and
B ⊆ A.
Another Typical Trick: Use that [G : H] = [G : K] · [K : H] when H ≤ K ≤ G are subgroups.

Example 1.32 (Fall 2015, problem #2). Let G be non-abelian and finite. Prove that |Z(G)| ≤ |G|/4.

Proof Sketch. The statement of this problem is equivalent to showing that

|G/Z(G)| = [G : Z(G)] = |G|/|Z(G)| ≥ 4.

If |G|/|Z(G)| ∈ {1, 2, 3}, in contrast, we show that G is abelian. If |G|/|Z(G)| = 1 then Z(G) = G so
that G is abelian. For the other two cases, we note that if |H| = p for any group H where p is prime
then H is cyclic. This fact follows from Lagrange’s theorem which shows that for g ∈ H, ord(g) = 1, p
so that for g 6= 1, g is a generator for H. Considering the representative case where |G/Z(G)| = 3,
we can see that the quotient satisfies the disjoint union representation G = Z ∪ Zg ∪ Zg2 for some
non-trivial g ∈ G. Then we perform a computation and rearrange terms with the normal center to see
that this quotient is abelian. A similar argument holds for the order-2 case.

Example 1.33 (Spring 2017, # 3). Let G be a group of order 10. Which of the following is a possible
class equation for G? (a) 1 + 1 + 1 + 2 + 5; (b) 1 + 2 + 2 + 5; (c) 1 + 2 + 3 + 4; (d) 1 + 1 + 2 + 2 + 2 + 2.

Proof. We show that (a) is not a valid class equation: if this were valid, then |Z(G)| = 3, and since
Z(G) ≤ G by Lagrange 3 | 10 (X ). Similarly, (c) is not a valid equation since each conjugacy class is
a subgroup of G and hence its size must be a divisor of 10 (X ). We consider (d): Then |Z(G)| = 2
where Z(G) E G and hence n2 = 1 (Z(G) is the unique Sylow 2-subgroup of G). Now if we let H
denote a Sylow 5-subgroup of G, then since 2, 5 are both prime, Z(G) ∼= Z2 and H ∼= Z5 are both
cyclic and hence abelian. We also know that all elements of Z(G) commute with all elements of H
since they are both Sylow subgroups for different primes. Then it follows that G ∼= Z(G)×H, which
is abelian, and so can have no conjugacy classes of size 2 < 10 = |G|. So (d) is not a possibility.
We are left with showing that (b) is the class equation for the dihedral group D2n when n = 5:
D10 = 〈r, s : r5 = s2 = (rs)2 = 1〉. Then we look at conjugacy classes in D10: we have {1}, 〈rs〉 = {a, b},
〈s〉 = {c, d}, and 〈r〉 = {e1, e2, e3, e4, e5}.

Example 1.34 (Spring 2016, # 3). Show that every group of order 35 is cyclic. In other words, up to
isomorphism, there is only one unique group of order 35.

Approach 1 (Direct method). Note that (5, 7) = 1 (orders must be coprime for this attempt to work).
G ∼= C5 × C7, which is cyclic (hence, abelian). Within (a, b) ∈ C5 × C7, there is an element (1, 1) of
order 1, and element (1, b) of order 7, an element (a, 1) of order 5, and the remaining elements (a, b) of
order 35. Then (1, 1) = (a, b)k = (ak, bk) which implies that 5 | k and 7 | k =⇒ 35 | k. So this cyclic
group is the whole group.

Note that in the above we used the second isomorphism theorem to show that HK = H ×K where
H is the normal Sylow 5-subgroup and K denotes the normal Sylow 7-subgroup:

HK/K ∼= H/(H ∩K) ∼= H/{1} ∼= H.

Example 1.35 (Fall 2017, # 1). Let x and y be two elements of order 2 in a finite group G. Prove
that 〈x, y〉 is eiether abelian or isomorphic to a dihedral group.
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Proof. Let H := 〈x, y〉 and let H ′ := 〈xy, y〉. Now since xy ∈ H and x = xyy ∈ H ′, we can see
that H = H ′. Suppose that n is the order of xy in G. Then since (xy)n = y2 = (xyy)2 = 1, we can
construct a well-defined surjective group homomorphism from D2n = 〈r, s | rn = s2 = (rs)2 = 1〉 onto
H by mapping r 7→ xy and s 7→ y. To complete the proof, we need to argue that this homomorphism
is injective – and hence bijective and so an isomorphism between these two groups. Let rks` denote
a non-trivial element in the kernel of the homomorphism for some k, ` ∈ N with 0 ≤ k < n and
` ∈ {0, 1} and such that k is minimal – or as small as possible. Then by the mapping we have defined
(xy)ky` = 1. Moreover, since |xy| =: n and |y| = 2 WLOG we can assume that k ≥ 1 and ` = 1.
If we have that k = 1, then 1 = xyy = x, which contradicts the hypothesis that |x| = 2. So we
may now assume that k ≥ 2. Then by computational, or rather algebraic, trickery we can show that
1 = yxxy = yx[(xy)ky]xy = yx[xy][(xy)k−2][xy]yxy = (xy)k−2y, which again contradicts the minimality
of k. Hence, k = 0 and we must have had that ` = 0 as well for this element to be in the kernel. So
the kernel of our homomorphism is {1}, which yields injectivity. We are done.

1.4 Group actions

Definition 1.36 (Group actions). Given a group G and any set X, a group action φ : G×X → X is
a map defined by g · x 7→ y which satisfies (1) 1 · x = x; and (2) (gh) · x = g · (h · x). Each element of G
can be thought of a providing an individual mapping φgi : X → X. The kernel of a group action is
a normal subgroup of G:

Ker(ϕ) = {g ∈ G : g · x = x,∀x ∈ X}
= {g ∈ G : ϕ(g) = idX}.

The orbit of x is defined by G · x = {gx : g ∈ G} ≤ X. The stabilizer of a in G, denoted by Ga, is the
subgroup of G defined by

Ga := {g ∈ G : g · a = a} ≤ G.

Clearly, Ga ≤ G for any fixed a ∈ X. The orbit-stabilizer theorem (see below) states that the mapping
hGx 7→ h · x is a bijection: |G| = |G · x| · |Gx| for any fixed x ∈ X.

Example 1.37 (Groups act on themselves by conjugation). If G is a group and G 	 G by conjugation,
then Ker(action) = CG(G) = Z(G).

Theorem 1.38 (The orbit-stabilizer theorem). Let the equivalence relation on A be defined by a b
if and only if a = g · b for some g ∈ G. The number of elements in the equivalence class containing
some a ∈ A (or the orbit of G containing a) is given by [G : Ga]: the index of the stabilizer of a in G.
Alternately, |Orb(x)| = [G : Stab(x)] = |G|/| Stab(x)|.

Example 1.39 (Spring 2015, # 5). Let G be a finite group, H ≤ G, and set [G : H] = p for p prime.
Let nH be the number of subgroups of G conjugate to H where K is conjugate to H if ∃g ∈ G such
that gKg−1 = H. Prove that nH = 1 if H is normal and that nH = p otherwise.

Proof. First, by the definition of normal if H is normal then gHg−1 = H for all g ∈ G. Thus
nH = 1 in this case. Now suppose that H is not normal. Let X := {set of subgroups of G}. We
form the group action G×X → X by conjugation which maps subgroups to subgroups (well-defined):
(g,H) 7→ gHg−1. Next, we look at the orbit of H under the action: G ·H = {gHg−1 : g ∈ G}. So we
see that | orbit(H)| = nH = |G · H|, which is the quantity we are looking for. By the orbit-stabilizer
theorem, we have that

nH = |G ·H| = |G|
|GH |

=
|G|

|{g ∈ G : gHg−1 = H}|
=

|G|
|NG(H)|

.
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From this we establish two possible cases. In case I, we consider that H = NG(H) so that nH =
|G|/|H| = [G : H] = p and we are done. In case II, we must consider the possibility that H 6= NG(H)
where H ≤ NG(H) ≤ G so that p = [G : H] = [G : NG(H)] · [NG(H) : H]. Then by assumption and
since p is prime we have that [G : NG(H)] = 1, which implies that H is normal – a contradiction to
our assumption. So in this case we have that nH = p, as required.

Example 1.40 (Fall 2013, #1). Let G be a group, and let H be a subgroup of G. If every prime p
dividing n := |H| is at least [G : H], prove that H is a normal subgroup of G.

Example 1.41 (Spring 2011, #2). Prove that if G is a finite group containing no subgroup of index
2, then any subgroup of index 3 is normal in G.

Lemma 1.42 (Burnside’s lemma). Suppose that a finite group G acts on a finite set X. Define a
function f : G→ N by letting f(g) be the number of points of X fixed by g: f(g) = |{x ∈ X : g ·x = x}|.
Then the number of orbits of this action is equal to

#(orbits) = |X/G| = 1

|G|
∑
g∈G

f(g).

In other words, the number of orbits is the average number of points fixed by the elements of G.

Exercise 1.43. Let G be a group acting on a set X. Show that if x1, x2 ∈ X lie in the same orbit,
then their stabilizers are conjugate subgroups of G.

1.5 Fundamental theorem of finitely generated abelian groups

Proposition 1.44 (Inveriant factor decomposition). If G is a finitely generated abelian group, then
there is a unique (!) expression of G ∼= Zr × Zn1 × · · · × Zns where r ≥ 0, nj ≥ 2, and ni+1 | ni for
1 ≤ i < s. Here r is called the free rank and the ni are called the invariant factors. We see that G is
finite ⇐⇒ r = 0, that |G| = n1 · · ·ns, and that if p is a prime factor of |G| then p|n1.

Proposition 1.45 (Primary decomposition for finite abelian groups). Let |G| = n < ∞ and suppose
that the prime factorization is n = pα1

1 · · · p
αk
k . Then G ∼= A1 × · · ·Ak where |Ai| = pαii . Moreover, for

each Ai, Ai ∼= Z
p
β1
i
×· · ·×Z

p
βt
i

where β1 ≥ β2 ≥ · · · ≥ βt ≥ 1 and β1 + · · ·+βt = αi. The prime powers

p
βj
i are the elementary divisors of G.

Corollaries of the previous proposition include the following:

• Zm × Zn ∼= Zmn iff gcd(m,n) = 1;

• If n = pα1
1 · · · p

αk
k , then Zn ∼= Zpα11

× · · · × Zpαkk .

• Let G be a finite group and let p1, · · · , ps be the distinct primes dividing its order with
Pi ∈ Sylpi(G). Then TFAE: (i) Pi E G for all 1 ≤ i ≤ s; and (ii) G ∼= P1 × P2 × · · · × Ps.

Particular examples of these decompositions include the following:

• G = Z6 × Z15. Then G ∼= Z2 × Z3 × Z3 × Z5 and the elementary divisors of G are 2, 3, 3, 5;

• G = Z10 × Z9 has elementary divisors 2, 5, 9 and G ∼= Z2 × Z5 × Z9.

• Also, note that Z6 × Z15 has no element of order 9 whereas Z10 × Z9 does.

Example 1.46 (Spring 2013, #2). Write down a complete list of abelian groups of order 270.
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1.6 Misc results on groups

Proposition 1.47 (Normal-indexed subgroups). If G is a finite group of order n and p is the smallest
prime dividing |G|, then any subgroup of index p is necessarily normal. Note that such a subgroup of
minimal prime order need not exist. In particular, any index-2 subgroup H ≤ G such that [G : H] = 2
is normal in G: in fact, H E G.

Example 1.48 (Properties of left cosets). For fixed choices of g ∈ H, the cosets of the group H are
defined by gH = {gh : h ∈ H}. Given a normal N E G, the set of left cosets of N in G forms a
partition of G:

G =
⋃
g∈G

gN.

We have that two cosets are equal, uN = vN , for some u, v ∈ G iff v−1u ∈ N . All cosets have the
same size.

Example 1.49 (Properties of cyclic subgroups). If |x| = n < ∞ for some element x ∈ G, then the
order of the ath power element is given by |xa| = n/ gcd(n, a). In particular, if H = 〈x〉 then this cyclic
subgroup is also generated as H = 〈xa〉 iff gcd(a, n) = 1. Every subgroup of a cyclic subgroup is also
itself cyclic. In the cyclic group case, we have a complete converse to Lagrange’s theorem. Namely, if
H = 〈x〉 with |x| = |H| = n <∞, then for each distinct a | n there are unique (!) cyclic subgroups of
H of order a: S =

〈
xd
〉

where d = n/a has order |S| = a.

Example 1.50 (Products of groups). For any two H,K ≤ G, we have that

HK := {hk : h ∈ H, k ∈ K}.

The order of such indirect product groups satisfies the following formula: |HK| = |H| · |K|/|H ∩K|.
This product group is itself not necessarily a subgroup of G. However, whenever K E G (with H ≤ G),
then HK ≤ G. Alternately, if H,K ≤ G and H ≤ NG(K), then HK ≤ G.

Fact: The number of conjugates of a subset S ⊆ G is the index of the normalizer of S, [G : NG(S)],
where NG(S) = {g ∈ G : gSg−1 = S}.

Some classifications

(1) |G| = p leads to a cyclic group;

(2) |G| = p2 leads to an abelian group, isomorphic to one of Zp × Zp or Zp2 ;

(3) |G| = pq: (i) if p - q − 1, then G is cyclic; and (ii) if p | q − 1 we have one cyclic and one
non-abelian case;

(4) |G| = p3, with p 6= 2: all lead to abelian cases: one of Zp3 , Zp2 × Zp, or (Zp)
3.

11



2 RING THEORY

2.1 Basics

Definition 2.1. A ring R(+, ·) is a set together with two binary operations such that (i) R(+) is an
abelian group with additive identity a + 0 = 0 + a = a; (ii) R(·) is a monoid satisfying a(bc) = (ab)c
with multiplicative identity 1a = a1 = a; and (iii) the distributive laws relating the two operations
hold: a(b+ c) = ab+ ac and (a+ b)c = ac+ bc. Note that we do not require multiplicative inverses nor
that multiplication is commutative. We have the following general containment structure:

group ⊃ ring ⊃ commutative ring ⊃ domains.

In a field, we add in inverses with respect to · and require that · is commutative.

Misc definitions.

• R× is the set of units of R which forms a group under ∗ (hence, the group of units).

• An example of a zero divisor in Z6 is 2 · 3 = 0.

• In a commutative ring the operation · becomes abelian.

• An (integral) domain is a commutative ring with identity 1 6= 0 with no zero divisors:
ab = 0 ⇐⇒ a = 0 or b = 0. Any finite integral domain is a field.
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• A unit is an element in the ring with a multiplicative inverse, i.e., a ∈ R such that a−1 ∈ R
exists. The product of two units is a unit. Units may not commute under multiplication.

• A nilpotent element a ∈ R is an element such that there is a n ≥ 1 such that an = 0. For
example, in 8Z, or equivalently mod 8, 2 is nilpotent since 23 = 0.

• A polynomial p(x) ∈ R[x] is reducible if ∃q(x), r(x) ∈ R[x] (not units) such that p(x) =
q(x)r(x).

To show that S ⊆ R is a subring it must be non-empty and closed under (−) and (∗). The relation “is
a subring” is transitive.

Example 2.2 (Spring 2013, #6). Let p be a prime number, and let Fp be the finite field with p
elements. How many elements of Fp have cube roots?

Definition 2.3 (Ideals). The motivation for defining ideals is similar to that behind defining normal
subgroups of a group G. We seek that if I + a, I + b ∈ R/I are cosets that (I + a) + (I + b) = I + a+ b
and (I + a)(I + b) = I + ab. Now a left ideal is a set I ⊆ R such that for all x, y ∈ I and for all r ∈ R:
x+ y ∈ I and rx ∈ I. We see that all elements of an ideal are of the form r1x1 + · · ·+ rnxn ∈ I. Also,
0 ∈ I (always since ±a ∈ I) and the multiplicative identity 1 ∈ I iff I = R .
Variants. We define the left ideal

RI = {r1x1 + · · ·+ rnxn : n ∈ N, ri ∈ R, xi ∈ I},

and do similarly for the corresponding right ideals, IR. We can also define sets like Rx and of course
RxR to be the principal ideal generated by x defined by RxR = {rixrj : ri, rj ∈ R}.
Properties. I+J is the smalest ideal of R containing both I and J . Additionally, IJ = {a1b1+· · ·+anbn :
ai ∈ I, bi ∈ J} is an ideal contained in I ∩ J (but it may be smaller). It is also the smallest ideal
containing the set {ab : a ∈ I, b ∈ J}. In particular, it is immediate that IJ ⊆ I ∩ J .

To prove that I ⊆ R is an ideal, we need to check that I is non-empty, that it is closed under (+),
and that it is closed under (∗) by all elements of R.

For any n ∈ Z, nZ is an ideal of Z (and these are the only ideals of Z). The natural projection
Z→ Z/nZ is called reduction modulo n.

Example 2.4 (Fall 2013, #4). Let R be a commutative ring with identity.

a. Let I, J be ideals of R, and let P be a prime ideal of R. If IJ ⊂ P , prove that either I ⊂ P
or J ⊂ P ;

b. Let A,B, I all be ideals of R. If I ⊂ A ∪B, prove that either I ⊂ A or I ⊂ B.

Definition 2.5 (Ring homomorphisms). A ring homomorphism φ : R→ S, satisfies the following:

(i) φ(a+ b) = φ(a) + φ(b) for all a, b ∈ R;

(ii) φ(ab) = φ(a)φ(b) for all a, b ∈ R;

(iii) φ(0R) = 0S;

(iv) If φ is surjective or S is an ID, then φ(1R) = 1S

If φ is a ring homomorphism, then Ker(φ) = {x : φ(x) = 0} is always an ideal . If I is any ideal,

then the map R→ R/I defined by r 7→ r + I is a surjective ring homomorphism with kernel I.
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Theorem 2.6 (The isomorphism theorems for rings). The first isomorphism theorem for rings states
that if φ : R→ S is a ring homomorphism then:

(1) Ker(φ) is an ideal of R;

(2) Im(φ) is a subring of S;

(3) Im(φ) ∼= R/Ker(φ).

Similarly, the second isomorphism theorem for rings states that if R is a ring, S ⊆ R is a subring, and
I is an ideal of R that:

(1) S + I is a subring of R;

(2) S ∩ I is an ideal of S;

(3) (S + I)/I ∼= S/(S ∩ I).

Theorem 2.7 (Chinese remainder theorem). If A,B ⊆ R are ideals we call them coprime if A+B = R,
which is the same as ∃a ∈ A, b ∈ B such that a+ b = 1. The Chinese remainder theorem states that if
I1, I2, . . . , Ik are pairwise coprime ideals of R and if I = I1 ∩ · · · ∩ Ik, then

R/I ∼= R/I1 × · · · ×R/Ik,

under the isomorphism I + a 7→ (I1 + a)× · · · × (Ik + a). If R is commutative, then I = I1 · · · Ik.

2.2 Representative questions from past comprehensive exams

Example 2.8 (Fall 2015, #3). Which of the following are isomorphic?

(a) R1 = Q[x]/(x2 − 1);

(b) R2 = Q[x]/(x2 − 2);

(c) R3 = Q[x]/(x2 − 3);

(d) R4 = Q[x]/(x2 − 4).

Proof. Recall that A := F [x]/(p(x)) is a field iff p(x) is irreducible over F . Thus R2 and R3 are fields

by Eisenstein where the other two choices are not since they split into linear factors over Q. And we
know that we cannot have an isomorphism between a field and a non-field. To show that R2 � R3

we need to find a contradiction in the properties of the elements of each respective field. Namely, by
splitting field theory properties we have that R2

∼= Q(
√

2) and R3
∼= Q(

√
3), but for example, 3 is not

a square in R2: (a+ b
√

2)2 = 3 =⇒ a2 + 2b2 = 3 and 2ab
√

2 = 0 =⇒ a = 0 ∨ b = 0, but a2 = 3 nor
2b2 = 3 have rational solutions. Now since 1

2
(x+ 1)− 1

2
(x− 1) = 1

4
(x+ 2)− 1

4
(x− 2) = 1, we have that

(x+ 1), (x− 1) are coprime, as are (x+ 2), (x− 2). So by the Chinese remainder theorem we see that
R1
∼= Q[x]/(x− 1)×Q[x]/(x+ 1) ∼= Q×Q and similarly for R4. Hence R1

∼= R4. Noting also that Q2

is not a field since (0, 1) · (1, 0) = 0.

Example 2.9 (Spring 2015, #2). Which of the following are isomorphic? R1 = Z[ı]/(5), R2 =
F5[x]/(x2 − 1), and R3 = F5[x]/(x2 + 1)?
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Proof. Here we may write F5 = {0, 1, 2, 3, 4}. Factorizing over this finite field shows that x2 + 1 =
(x+ a)(x+ b) = (x− a)(x+ a) = x2 − a2 7→ (x− 2)(x+ 2) = x2 − 4. So both polynomials x2 − 1 and
x2 + 1 split into linear factors in F5[x]. Now we see that in each case the ideals formed by these linear
factors are coprime: 3(x + 1) + 2(x − 1) = 1 = (x − 2) − (x + 2) = −4 = 1. Then by the CRT, we
obtain that R3

∼= F5[x]/(x+ 4)× F5[x]/(x+ 1) ∼= F5 × F5, and similarly, R2
∼= (F5)2 so that R2

∼= R3.
It remains to show that also R1

∼= R2, R3.

Since 5 = (2+ ı)(2− ı) is reducible in Z[ı] with the ideals (2± ı) again coprime to one another, by the
CRT we find that R1

∼= Z[ı]/(2 + ı)×Z[ı]/(2− ı). Consider an arbitrary non-identity element a+ bı in
the ring Z[ı]. We consider the behavior of adding multiples of this element (first modulo 2 + ı): a+ bı
(mod 2 + ı), . . . , 5(a + bı) = (2 + ı)(2 − ı)(a + bı) = 0 (mod 2 + ı). Hence 1 < ord(a + bı) ≤ 5 (since
we assumed that this element was not the identity). So by order considerations we have obtained that
R1
∼= Z5 × Z5

∼= (F5)2 since 5 prime implies that Z5 is in fact a finite field. Then all three rings are
isomorphic to one another.

Example 2.10 (Fall 2015, #8 and Spring 2017 #8). Let B be a commutative ring and let f =
∑n

i=0 bix
i

for bi ∈ B. Prove that f is nilpotent iff the bi are nilpotent.

Proof. In the reverse direction, we first claim that the sum of any two nilpotent a, b ∈ B is also nilpotent.
Indeed, for if an = bm = 0, then (a+ b)n+m =

∑n+m
i=0

(
n+m
i

)
aibj, where i+ j = n+m which implies that

we always have at least one of i ≥ n or j ≥ m. By extension (and/or the multinomial theorem) we can
see that the sum of a collection of nilpotent ai ∈ B is also nilpotent, i.e., if am1

1 = · · · = amnn = 0, then
(a1 + · · ·+ an)m1+···+mn = 0. This then implies necessarily that if the bi are nilpotent for all 0 ≤ i ≤ n
then there is some power m such that f(x)m = (

∑
i bix

i)
m

= 0. So f is nilpotent too.

In the forward direction, let m ≥ 1 be such that f(x)m = 0. Then deg(f(x)m) = nm and

0 =

(
n∑
i=0

bix
i

)
= anmx

nm + · · ·+ a1x+ bm0 ,

where the coefficients ai ∈ B are uniquely determined by the bi and the power m. Surely the equation
above must hold when we specialize the indeterminate x 7→ 0:

f(x)m
∣∣∣
x=0

= bm0 = 0,

and so we have determined that b0 is nilpotent. This shows also that −b0 is nilpotent, and so f(x)−b0 =
x(bnx

n−1 + · · · + b1) must be nilpotent. Then we repeat the same argument used for b0 to show that
b1 is nilpotent, and so on by induction, to obtain that bi is nilpotent for all 0 ≤ i ≤ n. And we are
done.

Example 2.11 (Fall 2012, #5). Let R be a commutative ring and set f(x) = a0+a1x+· · ·+anxn ∈ R[x]
a zero divisor in the polynomial ring R[x]. Show that there is a non-zero element b ∈ R such that
ba0 = ba1 = · · · = ban = 0.

Example 2.12 (Spring 2015, #6). Let I be a non-zero ideal of Z[x] and suppose that the lowest degree
of a polynomial in I is n and that I contains a monic polynomial of degree n. Prove that I is a principal
ideal.

Proof. Let f(x) = xn + an−1x
n−1 + · · · + a1x + a0 denote this magical stated monic polynomial of

degree n which we are given to exist. We surmise that we must prove that I = (f), i.e., I is principal
with generator f . To show this we can use subset containment. Namely, we must show both that (i)
(f) ⊆ I; and that (ii) I ⊆ (f) so that I = (f). For (i) it is easy enough to see that if m ∈ I is any
fixed element then clearly (m) ⊆ I since rm ∈ I for all r ∈ R. Now to show (ii) we let g ∈ I and use
the monic property of f to write g = f · q + r where deg(r) < deg(f). Since q · f ∈ I and g ∈ I, we
must then have that r = g − q · f ∈ I. But we have by hypothesis that the degree of f is minimal in
I. Hence, r = 0 which shows that g ∈ (f).
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2.3 Other topics on rings

An ideal generated by a single element is called a principal ideal. A domain in which all ideals are
principal is called a PID. As an example, mZ + nZ = dZ where d = gcd(m,n). Also, since for b ∈ R,
b ∈ (a) ⇐⇒ b = ra (a divides b in R, or equivalently, (a) ⊆ (b)), we have that nZ ⊆ mZ ⇐⇒ m | n.
An ideal M of R is called maximal if M 6= R and the only ideals of R containing M are M and R
itself. Every non-zero ideal in a PID is maximal.

Example 2.13 (Spring 2017, #7). Let R be a commutative ring with 1, and let M be a principal
maximal ideal. Prove each of the following:

1. Show that there is no ideal I such that M2 ( I (M ;

2. Give an example of a ring R and a maximal ideal M to show that this statement is false if M
is not assumed to be principal.

Proposition 2.14 (Irreducibility in PIDs). In a PID , a non-zero element is prime iff it is irreducible.

Proposition 2.15 (UFDs). An UFD is an integral domain in which every element has a unique (!)
factorization into irreducibles. In a UFD a non-zero element is prime iff it is irreducible.

Every PID is a UFD. In particular, every ED is a UFD .

Proposition 2.16 (Facts). We’ll recall that:

• PID =⇒ UFD;

• R a UFD =⇒ R[x] is a UFD;

• ED =⇒ PID, but not every PID is an ED. Euclidean domains possess a division algorithm.
Every ED is a UFD.

• If F is a field, then F [x], F [[x]] is an ED, and hence a PID (where a PID is a commutative
ring).

• R an ID =⇒ R[x], R[[x]] both IDs.

Let R be a commutative ring. Then M is a maximal ideal iff R/M is a field. Also, R[x]/(I) ∼=
(R/I)[x] – and in particular, I prime implies that (I) is prime in R[x] . However, it is NOT true

that if I is maximal in R then I is maximal in R[x]. Finally, if R is a commutative ring, then
R[x] is a PID ⇐⇒ R is a field. If R is commutative, then R is a field iff the only ideals of R are 0
and R itself.
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For r ∈ R, r 6= 0 and r not a unit, r is irreducible if whenever r = ab with a, b ∈ R then one
of a, b is a unit. A non-zero element p ∈ R is prime if (p) is a prime ideal ⇐⇒ p|ab implies
that p|a or p|b. An irreducible element is not necessarily prime: Take 3 ∈ Z[

√
−5] and observe that

3 | (2 +
√
−5)(2−

√
−5) = 32, but neither of 2±

√
−5 is divisible by 3 in R.

Definition 2.17 (Prime ideals). An ideal P is prime if P 6= R and ab ∈ P implies that a ∈ P or b ∈ P .
If R is commutative, then P is a prime ideal iff R/P is an integral domain. Maximal ideals

are prime in commutative rings, though the converse is false. In general, prime =⇒ irreducible. In a
PID, we have that prime ⇐⇒ irreducible. Similarly, in a UFD we have that prime ⇐⇒ irreducible.
In Z, maximal ideals are the same as prime ideals. Every maximal ideal is prime.

Fact: In a quotient ring, x1 + I = x2 + I implies that x1 − x2 ∈ I.

Example 2.18 (Fall 2016, #2). Let R be an integral domain containing a field F . Show that if R has
finite dimension as a vector space over F , then R is a field.

Example 2.19 (Spring 2014, #4). Let R be a principal ideal domain. Show that if P 6= 〈0〉 is a prime
ideal, then P is maximal.

Example 2.20 (Fall 2013, #3). Let I be the ideal (n, x3 +2x+2) in Z[x]. For which n with 1 ≤ n ≤ 7
is I a maximal ideal?

Example 2.21 (Notable cases and facts). Collected from various sources:

• The ideal I := (2, x) is NOT principal in Z[x] since x /∈ I:

(2, x) = {2p(x) + x · q(x) : p, q ∈ Z[x]}
= {polynomials in Z[x] with even constant term}.

Thus we conclude that Z[x] is not a Euclidean domain. However, Q[x] IS an ED.

• If the ideal (a, b) = (d) is principal then we can show that d = gcd(a, b).

• Z[
√
−5] is NOT a UFD, and hence is NOT a PID: 6 = 2 · 3 = (1 +

√
−5)(1−

√
−5).
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• N(α) prime implies that α is irreducible. (Proof strategy: Try taking N(aı+ b) = a2 + b2,
which is a norm an looking for prime factors.)

• (Z/pZ)[x] is a PID for p prime. However, Z[x]/(p) is a PID, where Z[x] is NOT a PID.

• x2 + 1 is NOT a perfect square in Z[x], but it is in Z/2Z[x].

• If R is an integral domain then deg(pq) = deg(p) + deg(q).

• If R is an integral domain, then the units of R[x] are precisely the units in R.

• R an integral domain =⇒ R[x] is an integral domain.

• R[x] has zero divisors ⇐⇒ R has zero divisors.

• x2 + 4 ∈ I2 = I · I, but x2 + 4 cannot be written as a single product q(x)p(x) in Z[x].

• R[x]/(x) ∼= R.

• Z[2ı] is an integral domain, but NOT a UFD.

Example 2.22 (Characterizations of units and nilpotent elements). Let R be an integral domain and
let f :=

∑n
i=0 aix

i ∈ R[x]. Then f is nilpotent precisely when all of the ai’s are nilpotent, and f is a
unit precisely when a1, a2, . . . , an are nilpotent and a0 is a unit in R. Let g :=

∑
i≥0 bix

i ∈ R[[x]]. Then
g is nilpotent precisely when all of the bi are nilpotent, and g is a unit whenever a0 is a unit.

Example 2.23 (Spring 2012, #4). Let R be a commutative ring with identity and let R× be the group
of invertible elements of R. Prove that R \R× is an ideal if and only if R has a unique maximal ideal.
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3 IRREDUCIBLE POLYNOMIALS

3.1 Irreducibility criteria

Theorem 3.1 (Gauss’ lemma). Let R be a UFD with field of fractions F , and let p(x) ∈ R[x]. If
p(x) is reducible in F [x] then it is reducible in R[x]. More precisely, if p(x) = A(x)B(x) for some
non-constant A,B ∈ F [x], then there are non-zero r, s ∈ F such that rA(x) = a(x) and sB(x) = b(x)
and p(x) = a(x)b(x) in R[x]. The contrapositive of Gauss’ lemma is also often useful.

An example gives that 7x is reducible in Z[x] but not in Q[x] since 7 is a unit in Q.

Proposition 3.2 (Roots and irreducibility). We have the following two characterizations of reducible
polynomials of small degree:

(1) Let F be a field and let p(x) ∈ F [x]. Then p(x) has a factor of degree-1 iff p(x) has a root in
F , i.e., ∃α ∈ F such that p(α) = 0.

(2) A polynomial of degree 2 or 3 over a field is reducible iff it has a root in F .

Proposition 3.3 (Rational roots theorem). Let p(x) = anx
n + · · ·+ a1x+ a0 be a polynomial of degree

n with integer coefficients. If r/s ∈ Q is in lowest terms, and r/s is a root of p(x), then we must have
that r|a0 and s|an, i.e., we have the more useful characterization that if the linear factor ax + b|p(x)
for integers a, b, then a|an and b|a0. In particular, if p(x) is monic in Z[x] and p(d) 6= 0 for all d|a0,
then p(x) has no roots in Q.

Example 3.4 (Fall 2017, #2). Find a factorization of

f(x) = 6x4 − 4x3 + 24x2 − 4x− 8,

into prime elements of Z[x].

Example 3.5 (Spring 2012, #5). Prove from first principles that the polynomial p(x) = 2x3 + x + 2
is irreducible over Q[x].

Proposition 3.6. Let I be a proper ideal in the integral domain R, and let p(x) be non-constant and
monic in R[x]. If the image of p(x) in (R/I)[x] cannot be factored in (R/I)[x] into two polynomials of
smaller degree, then p(x) is irreducible in R[x].

Theorem 3.7 (Eisenstein for PIDs). Let P be a prime ideal of the integral domain R, and let f(x) =

xn + · · · + a0 be a polynomial in R[x] for some n ≥ 1. Suppose an−1, . . . , a1, a0 are all elements of P
and suppose that a0 /∈ P 2. Then f(x) is irreducible in R[x].

Theorem 3.8 (Eisenstein for Z). Let p ∈ Z be prime and let f(x) = xn + · · · + a1x + a0 ∈ Z[x].
Suppose that p|ai for all i = 0, 1, . . . , n− 1, but that p2 - a0. Then f(x) is irreducible in both Z[x] and
Q[x] (by Gauss’ lemma). This is the same as the previous theorem for the prime ideals (p) (p prime)
of the integral domain Z.
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Example 3.9. Consider the following:

(a) Prove that x7 + 48x− 24 is irreducible in Q[x].

(b) Show that f(x, y) = x4 + x3y2 + x2y3 + y is irreducible in Q[x, y].

Proof of (a). By Eisenstein for the polynomial ring Z[x] with the prime ideal (3), we find that the
polynomial is irreducible over Z[x]: the polynomial is monic with 3|48, 3|(−24), and 32 - (−24). By
the contrapositive to Gauss’ lemma, the polynomial is also irreducible over Q[x].

Proof of (b). We apply Eisenstien to Q[x, y] = Q[y][x] for the prime ideal (y) ∈ Q[y], Indeed, (y) is a
prime ideal as Q[y]/(y) ∼= Q is a field and hence an integral domain. Moreover, f is clearly monic with
all non-leading terms divisible by y, and with constant term not divisible by y2.

Example 3.10. Another example which implicitly uses Eisenstein’s criterion in the integer polynomial
case shows that the following polynomial is irreducible whenever p is a prime integer:

(x+ 1)p − 1

x
= xp−1 + pxp−2 + · · ·+ p(p− 1)

2
x+ p ∈ Z[x].

Example 3.11 (Fall 2018, #7). Prove that f(x) = x4 + 1 is reducible modulo every prime p, but
irreducible in Q[x].

3.2 Towards field theory

Proposition 3.12. The maximal ideals in F [x] for F a field are the ideals (f(x)) generated by irre-
ducible polynomials in F .

Proposition 3.13. Let g(x) be a non-constant monic element of F [x] and let g(x) = f1(x)n1 · · · fk(x)nk

be its factorization into distinct irreducibles. Then

F [x]/(g(x)) ∼= F [x]/(f1(x)n1)× · · · × F [x]/(fk(x)nk).

Notice that for F a field, F [x]/〈x〉 ∼= F [[x]]/〈x〉 ∼= F .

Example 3.14. We have that C ∼= R/(x2 + 1) and that K := Q/(x2 + 1) ∼= Q(ı).

Example 3.15 (Fall 2014, #5). Let f(X) = (X7 − 1)/(X − 1) = X6 +X5 + · · ·+ 1. Prove that f is
irreducible over F3, but not over F7.
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4 FIELD THEORY

4.1 Basics and definitions

The characteristic of a field F is either zero (no such integer exists for many infinite fields) or some
prime p: ch(F ) = 0, p. For finite fields, the order of the field F is always some power of a prime pn.
If φ : F → F ′ is a homomorphism of fields , then either φ ≡ 0 is the trivial homomorphism, or φ is

necessarily injective . The ideal (p(x)) is maximal when p(x) is irreducible over F . Let F ⊆ K ⊆ L

be fields. Then [L : F ] = [L : K] · [K : F ].

Example 4.1 (Spring 2016, #8). Let p be prime and set q = pn for some positive integer n. Show
that the map x 7→ xp is an automorphism on Fq to itself. Describe all automorphisms on Fq.

Example 4.2 (Fall 2014, #3). Let R, S be commutative rings with 1, and let f : R → S be a ring
homomorphism. Prove that if R is a field, then either f is injective of S = 0.

Definition 4.3 (Field extensions). If the field K is an extension of the field F , written K/F for
K a field extension of F , then we write [K : F ] = dimF (K) as the dimension of K as a vector
space over F . The extension K := F (α) is simple and the element α is a primitive element for the
extension. The element α ∈ K is said to be algebraic over F is α is the root of a non-zero polynomial
f(x) ∈ F [x] with coefficients in F . Suppose that K1, K2 ⊆ K are subfields. Then the composite
field, K1K2, is the smallest subfield of K containing both K1 and K2. In such a case, we have that
[K1K2 : K] ≤ [K1 : K] · [K2 : K].

If α, β are both algebraic over F , then so are α± β, αβ, α/β (for β 6= 0), and α−1 (for α 6= 0).

Theorem 4.4 (Important Characterizations When Adjoining Primitive Elements). Let F be a field
and p(x) ∈ F [x] be irreducible. Suppose that K is an extension of F containing a root α of p(x) and
let F (α) denote the subfield of K generated by α over F . Then

F (α) ∼= F [x]/(p(x)).

A corollary of this result is that if deg(p(x)) = n, then

F (α) = {a0 + a1α + · · ·+ an−1α
n−1 : ai ∈ F} ⊆ K.

The roots of an irreducible polynomial p(x) over F are algebraically indistinguishable in that the fields
obtained by adjoining any one root of the polynomial to F are all isomorphic.

Definition 4.5 (Minimal polynomials). A polynomial f(x) ∈ F [x] has α as a root iff mF,α(x) | f(x)
in F [x]. A monic polynomial over F with α as a root is the minimal polynomial for α over F iff it is
irreducible over F . Let mα(x) denote the minimal polynomial of α over F . Then F (α) ∼= F [x]/(mα(x))

and in particular, [F (α) : F ] = deg(mα(x)) = degF (α) .

Example 4.6 (Fall 2016, #5). An algebraic integer is the solution to a monic polynomial with coeffi-
cients in Z.
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(a) Show that α is an algebraic integer if and only if {1, α, α2, . . .} generates a finite rank Z-
module.

(b) Let α be an algebraic integer and let p(x) = xn + an−1x
n−1 + · · · + a1x + a0 be a monic

polynomial with coefficients in Z which has α as a root and which is irreducible in Z[x]. Let
R := Z[α]. Prove that α is a unit in R if and only if a0 = ±1. (HINT: Consider 1/p(x).)

Example 4.7 (Spring 2012, #6). Let L/K be a finite extension of fields and suppose a, b ∈ L are
elements such that [K(a) : K] = 3 and [K(b) : K] = 2. What are the possibilities for [K(a + b) : K]?
Prove that your answer is correct.

Example 4.8 (Fall 2012, #8). Let α :=
√

5 and β := 3
√

2.

(a) Prove that the degree of the field extension Q(α, β)/Q is 6;

(b) Prove that the degree of the field extension Q(α + β)/Q is 6;

(c) Find the minimal polynomial of α + β over Q.

Example 4.9. Let K := F2
∼= Z/2Z and set g(x) = x2 + x + 1, which is irreducible in F2(x). Let

L := F2[x]/(g(x)). Then L/K has degree 2 and L = {a+ bθ : a, b ∈ F2} where θ2 = θ + 1.

Definition 4.10 (Frobenius map). If K is a field of characteristic p, then the map ϕ(x) 7→ xp is an
injective (surjective) map from K → K.

Example 4.11 (Spring 2017, #2). Consider the polynomial

f(x) =
x23 − 1

x− 1
=

22∑
n=0

xn.

Determine the number of irreducible factors of f(x) over (1) Q; (2) F2; and (3) F2048.

Example 4.12 (Spring 2015, #1). Complete each of the following subproblems:

(a) Prove that the polynomial f(X) = X6 +X3 + 1 = (X9 − 1)/(X3 − 1) is irreducible over Q;

(b) Find the factorization of f(X) over F19.

4.2 Splitting fields of polynomials

Definition 4.13. The extension field K/F is a splitting field for the polynomial f(x) ∈ F [x] if f(x)
factors completely into linear factors in K[x] and does not split completely into linear factors over
any subfield of K containing F . By a key theorem, we know that if f(x) ∈ F [x] then there exists an
extension field K/F which is the splitting field for f(x). A splitting field of a polynomial of degree n
over F is of degree at most n! over F .

Example 4.14 (Splitting fields of special polynomials). First, the splitting field for f(x) = (x2 −
2)(x2 − 3) is Q(

√
2,
√

3) and is hence of degree 4 over Q. Subfields of degree 2 over Q are given by:
Q(α) for α ∈ {

√
2,
√

3,
√

6}. Second, since

x4 + 4 = (x2 + 2)2 − 4x2 = (x2 + 2x+ 2)(x2 − 2x+ 2),

the splitting field of this polynomial over Q is Q(ı) which satisfies only [Q(ı) : Q] = 2, despite being a
polynomial of degree 4. Additionally, the polynomial splits as x3− 2 = (x− 3

√
2)(x−ω 3

√
2)(x−ω2 3

√
2),

so its splitting field is Q( 3
√

2, ω), which is a degree-6 extension over Q.
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Example 4.15 (Spring 2014, #3). Find the degree of the splitting field of the polynomial f(x) = x6−7
over each of the following fields:

(a) Q;

(b) Q(ζ3), where ζ3 is a primitive 3rd root of unity;

(c) F3 (the finite field with 3 elements).

Example 4.16 (Spring 2012, #7). What is the cardinality of the splitting field of f(x) = x3 − 1 over
F11? Same question over F49.

Example 4.17 (Cyclotomic fields and splitting fields of xn − 1). First, we require some notation and
definitions for the nth roots of unity when n ≥ 2. A generator for the cyclic group of all nth roots of
unity is a primitive nth root of unity. Writing ζn := e2πı/n there are exactly φ(n) primitive roots and
these are of the form ζan for 1 ≤ a < n where gcd(a, n) = 1. We define Q(ζn) to be the cyclotomic
field of the nth roots of unity. It follows that Q(ζn) is the splitting field of f(x) = xn − 1 over Q. For
p prime ζp is a root of the irreducible polynomial

Φp(x) = xp−1 + xp−2 + · · ·+ x+ 1,

which then in turn implies that Φp(x) is the minimal polynomial of ζp over Q. Then we see that

[Q(ζp) : Q] = p− 1. More generally, [Q(ζn) : Q] = φ(n) .

Example 4.18 (The spliting field of xp−2 for p prime). See also page 541. The splitting field of xp−2
is Q(ζp,

p
√

2), which is a degree p(p− 1) extension over Q.

Definition 4.19 (Separability of polynomials). A polynomial f(x) ∈ F [x] is called separable (over

F) if it has no multiple roots in F. Otherwise the polynomial is inseparable. For example, the

polynomial f(x) = x2 − t is irreducible over F2, but is inseparable over F2(t) since its two roots ±
√
t

are indistinguishable in this field. Also, this polynomial is inseparable since Dx[f ] = 0 in F2 and
√
t is

algebraic over F2.

Proposition 4.20 (Characterizations of separability by the derivative). A polynomial f(x) has a mul-
tiple root α iff α is also a root of Dx[f(x)], i.e., f(x) and Dx[f(x)] are both divisible by the minimal poly-
nomial for α. In particular, f(x) is separable iff it is relatively prime to its derivative: gcd(f,Dx[f ]) = 1.

Example 4.21 (Fall 2012, #6). Let f(x) ∈ Q[x] be a rational polynomial irreducible over Q. Prove
that f(x) has no multiple (repeated) roots in C.

Corollary 4.22 (Irreducibility and separability). Every irreducible polynomial over a field of
characteristic 0 (for example, Q) is separable. A polynomial over such a field is separable iff
it is the product of distinct irreducible polynomials over F . We also can prove that every irreducible
polynomial over a finite field is separable. A polynomial in F[x] is separable iff it is the product of
distinct irreducible polynomials in F[x].

If F is a field of characteristic p, then for any a, b ∈ F we have that (i) (a + b)p = ap + bp; and (ii)
(ab)p = apbp. One corollary of this fact is that if F is a finite field of characteristic p then every element
of F is a pth power (notationally: F = Fp).
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4.3 More on cyclotomic polynomials and their extensions

Definition 4.23. Let µn denote the group of nth roots of unity over Q. Then we have that µn ∼= Z/nZ
where the group operations are ∗ in both, i.e., µn is a multiplicative group. The cyclotomic polynomials
are defined as the first sequence:

Φn(x) =
∏

1≤a<n
(a,n)=1

(x− ζan), deg(Φn(x)) = φ(n)

=
∏
d|n

(1− xn/d)µ(d)

xn − 1 =
∏
ζn=1

(x− ζ) =
∏
d|n

Φd(x).

For example, Φ6(x) = x2 − x + 1, Φp(x) = xp−1 + · · · + x + 1, and we have that Φ2p(x) = Φp(−x) for
prime p. The cyclotomic polynomial Φn(x) is seen to be an irreducible monic polynomial in Z[x] of
degree φ(n). Then as a corollary of this fact, we have that both [Q(ζn) : Q] = φ(n), and Φn(x) must
be the minimal polynomial of any nth root of unity.

As an example (following from the preceeding section), we find that Q(ζ8) = Q(ı,
√

2) since ζ8 +ζ7
8 =√

2 (see page 555). Note that in general, we have that ζp + ζp−1
p = 2 · cos(2π/p). Also, ζ2

8 =
√

2
2

(1 + ı).
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5 GALOIS THEORY

Definition 5.1. We have some new uses of previous notation:

(1) An isomorphism σ : K → K is an automorphism of K. The collection of automorphisms of
K is the group Aut(K) which is a group under composition of functions and Aut(K/F ) (see
below) is an important subgroup.

(2) The element σ ∈ Aut(K) fixes α ∈ K if σα = α. If F ⊆ K is a subfield and σ fixes all β ∈ F ,
then we say that σ fixes the field F .

(3) Let Aut(K/F ) denote the collection of σ ∈ Aut(K) which fix F .

(4) If H ≤ Aut(K), then the subfield of K fixed by all of the elements of H is called the fixed
field of H.

Proposition 5.2. Let K/F be a field extension and suppose that α ∈ K is algebraic over F . Then for
any σ ∈ Aut(K/F ), σα is a root of the minimal polynomial of α over F , i.e., Aut(K/F ) only permutes
the roots of irreducible polynomials in F [x].

Proposition 5.3. Let E be the splitting field of f(x) ∈ F [x] over F . Then |Aut(E/F )| ≤ [E : F ] with
equality only if f(x) is separable over F .

Definition 5.4 (Galois groups and Galois extensions). We say that K is Galois over F , and write that
K/F is a Galois extension, if |Aut(K/F )| = [K : F ]. If K/F is Galois, then
Aut(K/F ) is the Galois group of K/F , also denoted by Gal(K/F ). If K is the splitting field over F
of a separable polynomial f(x) ∈ F [x], then K/F is Galois. Moreover, if f(x) ∈ F [x] is separable, then
the Galois group of f(x) over F is the Galois group of the splitting field of f(x) over F .

Alternately: A Galois extension H/K is an algebraic extension that is both normal and separable.
In a normal extension H/K, every polynomial that is irreducible over K is either irreducible over H
or splits into linear factors over H. A polynomial f is again separable in H if it has only distinct roots
in H iff its formal derivative Dx[f ] does not have any roots in H.

5.1 Some preliminary and motivating examples

Example 5.5. The field Q(
√

2,
√

3) is Galois over Q since it is the splitting field of f(x) = (x2 −
2)(x2 − 3). Any automorphisms σ, τ ∈ Gal(Q(

√
2,
√

3)/Q) are completely determined by their actions
on the generators

√
2 and

√
3:
√

2→ ±
√

2 and
√

3→ ±
√

3. In particular, we define

σ :

{√
2→ −

√
2√

3→
√

3

τ :

{ √
2→

√
2√

3→ −
√

3
,
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or stated more explicitly as the mappings

σ : a+ b
√

2 + c
√

3 + d
√

6 7−→ a− b
√

2 + c
√

3− d
√

6

τ : a+ b
√

2 + c
√

3 + d
√

6 7−→ a+ b
√

2− c
√

3− d
√

6.

Then as we can easily compute,

Gal(Q(
√

2,
√

3)/Q) = {1, σ, τ, στ}.

Moreover, there is a distinctive pattern to the subgroups of this Galois group and their corresponding
fixed fields shown for illustration below:

Subgroup Fixed field

{1} Q(
√

2,
√

3)

{1, σ} Q(
√

3)

{1, στ} Q(
√

6)

{1, τ} Q(
√

2)
{1, σ, τ, στ} Q

Example 5.6. The splitting field of x3 − 2 over Q is of degree 6 since

x3 − 2 = 0 =⇒ x =
3
√

2, ρ
3
√

2, ρ2 3
√

2, for ρ ≡ ζ3 =
−1 +

√
−3

2
.

Hence, the splitting field of this polynomial is Q( 3
√

2, ρ · 3
√

2). Notice that there are technically nine
possbilities for automorphisms permuting these roots, but not all of these turn out to be automorphisms
of the full field. To simplify our considerations, we can use our notation for the generators 3

√
2 and ρ.

Then any σ in the Galois group maps 3
√

2 → { 3
√

2, ρ 3
√

2, ρ2 3
√

2} and/or ρ → {ρ, ρ2 = −(1 + ρ)} (i.e.,
ρ2 + ρ+ 1 = 0). In particular, we define

σ :

{
3
√

2→ ρ 3
√

2
ρ→ ρ

τ :

{
3
√

2→ ρ 3
√

2
ρ→ ρ2 = −(1 + ρ)

.

Then as we can compute, σ3 = τ 2 = 1 , which implies together with the observation that στ = τσ2,
that

Gal(Q(
3
√

2, ζ3)/Q) = 〈σ, τ〉 ∼= S3.

Example 5.7 (Non-Galois extensions). First, we see that Q( 4
√

2) is NOT Galois over Q since σ sends
4
√

2 → {± 4
√

2,±ı · 4
√

2} – and only two of these possibilities are actually elements of the field itself.
We do however note that this degree-4 extension corresponds to the composition of the two degree-2
extensions Q ⊂ Q(

√
2) ⊂ Q( 4

√
2). In these two sub-cases, both of Q(

√
2)/Q and Q( 4

√
2)/Q(

√
2) are

in fact Galois extensions since they are quadratic extensions (splitting fields of some x2 − D).
Secondly, we note that the inseparable extension F2(x)/F2(t) corresponding to the splitting field of
the polynomial f(x) = x2 − t is NOT Galois since this extension can only possibly have the trivial
automorphism.

Example 5.8 (Important). The extension Fpn/Fp is Galois since Fpn is the splitting field over Fp of
the separable polynomial xp

n − x. In this case, the automorphism σp : Fpn → Fpn given by α 7→ αp

is surjective. We can also deduce that σnp = 1, so that Gal(Fpn/Fp) is cyclic of order n and hence

isomorphic to Z/nZ.
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Example 5.9 (Simplifiying Observations by Hamed and Daniel, Fall 2018). We have the following
isomorphism properties of special Galois groups:

• Gal(Q( 4
√

2, ı)/Q) ∼= Z4 × Z2;

• Gal(Q(ζ8)/Q) ∼= (Z/8Z)× ∼= Z2 × Z2.

5.2 The fundamental theorem of Galois theory

Theorem 5.10 (Key Result). Let G := {1 = σ1, . . . , σn} be the subgroup G ≤ Aut(K) with fixed field
F . Then [K : F ] = n = |G|. An important corollary of this result is that the extension K/F is
Galois iff it is the splitting field of some separable polynomial over F.

Theorem 5.11. Let K/F be a Galois extension and set G := Gal(K/F ). The fundamental theorem
of Galois theory states that there is a bijective correspondence between the subfields E of K containing
F (K −E − F ) and the subgroups H ≤ G (1−H −G). This bijection is given by the correspondences
E → {The elements of G fixing E} and {The fixed field of H} ← H. The exact statement of this
theorem is reproduced from Dummit and Foote (page 574) below.

Example 5.12. We have now two good ways to see that Q(
√

2,
√

3) = Q(
√

2 +
√

3). The first
way is to look at conjugates of the roots of α =

√
2 +
√

3 and deduce that its minimal polynomial
is f(x) = x4 − 10x2 + 1. This minimal polynomial is irreducible where Q(

√
2 +
√

3) is clearly a
subfield of the Galois extension Q(

√
2,
√

3). Thus by order considerations these two fields must be
equal. The second way is a consequence of the fundamental theorem. Namely, only the automorphism
1 ∈ {1, σ, τ, στ} fixes

√
2 +
√

3, so it must be the case that the fixing group for this field is the same as
that for Q(

√
2,
√

3).

5.3 Finite fields

We have some basic facts about finite fields and their Galois groups and extensions:
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• If [F : Fp] = n, then |F| = pn and F is isomorphic to the splitting field of the polynomial
f(x) = xp

n − x.

• We have that Gal(Fpn/Fp) = 〈σp〉 ∼= Z/nZ. Moreover, since the Galois group here is abelian,
every subgroup of it is normal, which then implies that each of the subfields Fpd for d | n are
Galois over Fp.

Proposition 5.13 (Distinct irreducibles over finite fields). The polynomial xp
n − x is precisely the

product of all the distinct irreducible polynomials in Fp[x] of degree d where d runs through all the
divisors of n. We then have the following consequences of this observation:

• The irreducible quadratics over F2 are the divisors of (x4 − x)/(x(x− 1)) = x2 + x+ 1.

• The irreducible cubics over F2 are divisors of (x8 − x)/(x(x − 1)) = x6 + x5 + · · · + x + 1 =
(x3 + x+ 1)(x3 + x2 + 1).

• We have that Fpn ∼= Fp[x]/(f(x)) for f(x) irreducible of degree n. For example, F2[x]/(x4 +

x+ 1) ∼= F2[x]/(x4 + x3 + 1) ∼= F16.

5.4 Special Galois groups

Regarding cyclotomic extensions and abelian extensions overQ, we first have that Gal(Q(ζn)/Q) ∼= (Z/nZ)× ,

where we have the correspondence a (mod n) 7→ σa for σa(ζn) := ζan. An interesting case gives us
the first example so far of an abelian extension of degree-4: Q(ζ5)/Q has the cyclic Galois group
(Z/5Z)× ∼= Z/4Z.

Corollary 5.14. Suppose that we have K1, K2 both Galois extensions of F with K1 ∩K2 = F . Then

Gal(K1K2/F ) ∼= Gal(K1/F )×Gal(K2/F ).

Let n = pa11 · · · p
ak
k denote the factorization of n into distinct prime powers. Then the cyclotomic

fields Q(ζpaii ) intersect only in the field Q for i = 1, 2, . . . , k, and their composite field is precisely the

cyclotimic field Q(ζn). Hence, we obtain that

Gal(Q(ζn)/Q) ∼= Gal(Q(ζpa11 )/Q)× · · · ×Gal(Q(ζpakk
)/Q).

Equivalently, we obtain our previous result from the Chinese remainder theorem which states that

(Z/nZ)× ∼= (Z/pa11 Z)× × · · · × (Z/pakk Z)×.

5.5 Galois groups of polynomials

Theorem 5.15 (Symmetric Galois groups and general polynomials). For indeterminates x1, x2, . . . , xn,
the general polynomial

f(x) = (x− x1) · · · (x− xn) = xn − s1x
n−1 + s2x

n−2 + · · ·+ (−1)nsn,

over the field F (s1, s2, . . . , sn) is separable with Galois group of Sn.

Definition 5.16 (Discriminants of polynomials). The discriminant of the roots xi of f(x) is the square
product:

D :=
∏
i<j

(xi − xj)2,
√
D =

∏
i<j

(xi − xj).

Properties of discriminants.
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• We have that D = 0 iff f(x) is NOT separable, i.e., when the roots x1, x2, . . . , xn are not
distinct.

• D is symmetric in the roots of f(x) and is hence fixed by all of the automorphisms in the
Galois group of f(x).

• Since D ∈ F and
√
D =

∏
i<j(xi−xj),

√
D is always contained in the splitting field for f(x).

Proposition 5.17. The Galois group of f(x) ∈ F [x] is a subgroup of An iff the discriminant D ∈ F
is the square of an element of F .

Polynomials of degree 2

Here, by renormalization if necessary, we have that f(x) = x2 + bx+ c and D = b2 − 4c .

• The polynomial f is separable iff b2 − 4c 6= 0 (i.e., no repeated roots in this case).

• The Galois group of f is a subgroup of S2
∼= Z/2Z, the cyclic group of order 2. This Galois

group is trivial (∼= A2) iff b2 − 4c is a rational square.

• If the polynomial f is irreducible, the the Galois group is isomorphic to Z/2Z since the splitting
field is the quadratic extension F (

√
D).

Polynomials of degree 3

Here, we consider the polynomial f(x) = x3 + ax2 + bx + c under the change of variable x 7→ y − a/3
to obtain the polynomial g(y) = y3 + py+ q. Under this substitution, the splitting fields of both f and
g are the same and these two polynomials have the same discriminant D = −(4p3 + 27q2).

(a) If g is reducible: (i) 1, 1, 1 leads to the trivial Galois group; and (ii) 1, irreducible of degree 2
leads to a Galois group of degree 2.

(b) If g is irreducible:

• A root of f(x) generates an extension of degree-3 over F so that the degree of the
splitting field over F is divisible by 3.

• The Galois group is a subgroup of S3 (either A3 or all of S3 itself).

• The Galois group is A3
∼= Z/3Z iff D is square in F .

• If D = h2 for some h ∈ F , then the splitting field is obtained by adjoining any
single root of f to F . The resulting field is Galois over F of degree 3 with a
cyclic group of order 3 as its Galois group.

• If D is not square in F , then the splitting field of f(x) is of degree 6 over F , and

hence F (ϑ,
√
D) for any single root ϑ of f(x). The resulting extension is Galois

over F with Galois group S3.

Polynomials of degree 4

Here we have f(x) = x4 + ax3 + bx2 + cx + d and then g(y) = y4 + py2 + qy + r under the change of
variable x 7→ y− a/4. Let the roots of g(y) be α1, α2, α3, α4, and let G denote the Galois group for the
splitting field of g(y). We are primarily concerned with the case where g(y) is reducible:

• Case degree 1, 3 split: Then G is the Galois group of the cubic from above.
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• Case degree 2, 2 split (both irreducible): Then the splitting field is the extension F (
√
D1,
√
D2)

where D1, D2 are the two discriminants of the irreducible quadratics.

• In the last case, if D1 = h2 ·D2 for some h ∈ F , then this extension is quadratic and G ∼= Z/2Z.

5.6 Practice problems

Example 5.18 (Spring 2018, #5). Compute the Galois group of x4 − x2 − 6 over Q.

Example 5.19 (Fall 2017, #4). Find all primitive elements in the field extensionQ(
√

2,
√

3)/Q. Justify
your answer.

Example 5.20 (Fall 2017, #8). Show that f(x) = x3 − 3x − 1 is an irreducible element of Z[x].
Compute the Galois group of the splitting field of f over Q and over R.

Example 5.21 (Spring 2017, #6). Find the Galois group of the splitting field of the polynomial
f(x) = x3 − x+ 1 over each of the following fields:

1. F2;

2. R; and

3. Q.

Example 5.22 (Spring 2016, #1). Let F = Q(
√

2,
√

3). List all intermediate fields K such that
Q ⊂ K ⊂ F , and find all elements α ∈ F such that F = Q(α).

Example 5.23 (Spring 2015, #3). Let K be the splitting field over Q for an irreducible polynomial of
degree 3. What are the possibilities for [K : Q]? Give an example to show that each possibility does
occur.

Example 5.24 (New Algebra Comp Exam Problems, #4). Find the Galois group of the splitting field
for f(x) = x3 − 7 over K = Q(

√
−3).
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6 SOLUTIONS TO OTHER ASSIGNED
PROBLEMS

Example 6.1 (Spring 2016, # 5). Is the ring Z[2ı], where (2ı)2 = −4, a PID? If not, give an example
of a non-principal ideal.

Proof. Let R := Z[2ı] be the base ring and let the ideal I := (2, 2ı) of R. We show that this ideal is
not principal. Notice that 2, 2ı do not divide each other in R. Suppose that (2, 2ı) = (f) for some
f ∈ R. Then 2, 2ı ∈ R implies that 2 = af and 2ı = bf for some a, b ∈ R. Consider the non-negative,
multiplicative norm φ : R→ R≥0 defined by φ(a+ bı) := a2 + b2. Then we can compute that

4 = φ(2) = φ(a)φ(f)

4 = φ(2ı) = φ(b)φ(f),

which implies that φ(f) | 4, or that φ(f) ∈ {1, 2, 4}, i.e., f ∈ {±1,±2,±2ı}. To simplify cases, we will
symmetrically assume (WLOG) that f ∈ {1, 2, 4}. We consider the following cases:

• If φ(f) = 1, then (2, 2ı) = R, which is a contradiction because, for example, 1 /∈ (2, 2ı).

• If φ(f) = 2, we arrive at a contradiction because there are no elements in R of norm 2.

• If φ(f) = 4, then f = ±2,±2ı (where we will assume that f = 2 or f = 2ı for simplicity of
exposition).

Let’s suppose that (2, 2ı) = (2). Then 2ı = 2g for some g ∈ R which implies that g = ı, a contradiction
since ı /∈ R. If on the other hand, (2, 2ı) = (2ı), then for some h ∈ R 2 = 2ı · h, which is the same as
h = −ı /∈ R, another contradiction. Hence R is not a PID.

Example 6.2 (Spring 2016, # 7). Let R be an integral domain. Show that every automorphism of
R[x] that is identity on R is given by x 7→ ax+ b where a, b ∈ R and a is a unit.

Proof. Let σ ∈ Aut(R[x]) be such that σ(x) = anx
n + · · ·+a1x+a0 for an 6= 0. Then for any degree-m

element g(x) := bmx
m+· · ·+b1x+b0 with m ≥ 1 we have that σ(g(x)) = anb

n
mx

mn+(lower order terms),
which is itself a polynomial of degree mn ≥ n with non-zero leading coefficient anb

n
m. The leading

coefficient is again non-zero since R is an integral domain. For the polynomial x to be in the image of
σ (which it must be since σ is an automorphism of R[x]), we are going to need to require that n = 1
and that a1 is a unit.

Example 6.3 (Fall 2016, # 3). Let R be an integral domain. Suppose that r is a non-zero, non-unit,
irreducible element of R, and let 〈r〉 denote the ideal generated by r.

(a) If R is a UFD, is R/ 〈r〉 also a UFD?

(b) If R is a PID, is R/ 〈r〉 also a PID?
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Proof. For (a): NO. As a counter example, let R := C[x, y, z] and let r := xy−z2. Then R is an integral
domain since C is a field and r is irreducible since otherwise xy − z2 would factor as a homogeneous
polynomial of degree-1. By our inspection this is not possible. It follows that x · y = z · z has two
different factorizations in the quotient since z2 + 〈r〉 = z2 + xy − z2 + 〈r〉 = xy + 〈r〉. For (b): YES.
In a PID, an irreducible element generates a prime ideal, and prime ideals in this context a maximal.
Hence the quotient is a field.

Example 6.4 (Spring 2017, # 4). Prove or disprove: The following rings are isomorphic? R1 :=
F5[x]/(x4 + x2 + 1) and R2 := F5/(x

4 − x3 + x2 − 1).

Proof. First we handle R2: We can factor x4 − x3 + x2 − 1 = (x− 1)(x3 + x+ 1). Moreover, if we plug
in x = 0, 1, 2, 3,−1 we can see that x3 + x + 1 does not have any roots in F5. Then by the Chinese
remainder theorem (CRT), we have that

R2
∼= F5 × F5[x]/(x3 + x+ 1).

In this case, taking a composition if necessary, we can define a ring homomorphism from R2 → F5.

On the other hand, suppose that there were a corresponding ring homomorphism φ : R1 → F5. Any
such homomorphism takes the form φ(f) = f(i) for some i ∈ F5. But since x4 + x2 + 1 should be zero
in the quotient, and since x4 +x2 + 1 6= 0 upon substitution of x = 0, 1, 2, 3, 4, we have a contradiction.
Thus the two rings cannot be isomorphic.

Example 6.5 (Spring 2018, # 3). Let R be a commutative ring with 1. Suppose an ideal I in R is
such that xy ∈ I implies that either x ∈ I or yn ∈ I. Let

√
I := {r ∈ R : rn ∈ I for some integer n ≥ 1}.

Show that
√
I is the smallest prime ideal containing I. (Here, “smallest” means that any other prime

ideal containing I, contains
√
I. Hint: remember to prove that

√
I is an ideal, which is also prime.)

Proof. Show that
√
I is an ideal. Since 0 = 01 ∈ I we know that

√
I is non-empty. Now suppose that

x, y ∈
√
I. We need to show that x+ y ∈

√
I. By the definition of

√
I, we have that there are n,m ≥ 1

such that xn, ym ∈ I. By applying the binomial theorem,

(x+ y)n+m =
n+m∑
i=0

(
n+m

i

)
xiyn+m−i.

For any 0 ≤ i ≤ n+m, either i ≥ n or n+m− i ≥ m. So it follows that xiyn+m−i ∈ I, which implies
that x+ y ∈

√
I. Then because I is an ideal, for any a ∈ R, (ax)n = anxn ∈ I. So ax ∈

√
I and hence

we have proved that
√
I is an ideal.

Show that
√
I is prime. Suppose that x, y ∈ R and that xy ∈

√
I. Then by definition there is a positive

natural number n ≥ 1 such that (xy)n = xnyn (by commutativity) is in I. By the construction of I,
we know that either xn ∈ I or (yn)m = ynm ∈ I for some m ≥ 1. In the first case, x ∈

√
I, and in the

second case y ∈
√
I. Thus we have shown that

√
I is a prime ideal.

Show that if P is prime and I ⊆ P , then
√
I ⊆ P . Suppose that P is a prime ideal containing I and

suppose that x ∈
√
I. We need to show that x ∈ P . Now since x ∈

√
I we must have that xn ∈ I ⊆ P

for some n ≥ 1. Since P is itself prime, either x or xn−1 is in P . In the first case we are done. In the
second case, we have that xn−1 = x(xn−2) ∈ P , so we can repeat the same argument inductively to
show that x or xn−2 is in P . Since n is a finite natural number, we can eventually see that we must
have that x ∈ P . Hence we have shown that

√
I is the smallest such prime ideal containing I.

Example 6.6 (Spring 2018, # 4). Suppose that R is a commutative ring with 1 such that for every
x ∈ R, there is some natural number n > 1 such that xn = x. Show that every prime ideal of R is
maximal.
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Proof. An ideal M is maximal iff R/M is a field. Let P be a prime ideal. We already know that
R/P is an integral domain since P is prime, so it suffices for us to show that each non-zero element of
R/P has a multiplicative inverse. We will use the bar notation to denote reduction modulo P when
considering any non-zero x̄ ∈ R/P corresponding to x ∈ R. For convenience in notation, for this fixed
x let y := x̄. Suppose that n ≥ 2 is the guaranteed natural number such that xn = x. Then we can
see that x̄n = yn = x̄ = y, or equivalently that y(yn−1 − 1) = 0. But since R/P is an integral domain
and we have assumed that y 6= 0, we know that yn−1 = y · yn−2 = 1. Thus yn−2 is our desired inverse
for y.

Example 6.7 (Fall 2015, # 1). Let F be a finite field and let M be an invertible n × n matrix with
entries in F . Prove that Mm − In is not invertible for some integer m ≥ 1.

Proof. Select any n× 1 vector v 6= 0 with coefficients in F . Because F is finite there are only finitely-
many choices for the vectors in the sequence v,Mv,M2v, . . .. By the pidgeonhole principle we must
have that M iv = M jv for some i 6= j. Letting u := M iv, we see that M j−iu = u, or that (M j−i−In)u =
M j−iu − Inu = u − u = 0. So we can conclude that either M j−i − In is not invertible (in which case
we are done), or that it is invertible which would imply that u = 0. But we can always select a u such
that u 6= 0 since if we could not pick such a u (i.e., if we had that M iv = 0 ∀v) then this would imply
that M ≡ 0. And that would be a contradiction to our hypothesis on the invertibility of M .

Example 6.8 (Fall 2015, # 7). Show that for any field F and any integer d ≥ 1, there exists at most
one finite multiplicative subgroup G ⊂ F \ {0} of order d.

Proof. We know that any polynomial of degree n over F has at most n roots since F is a field. For
d ≥ 1, consider the polynomial p(x) ∈ F [x] defined by p(x) := xd − 1. Now if a subgroup G of
order d exists, then ∀e ∈ G, e is a root of p(x). But if there were another distinct subgroup H with
|H| = d and where ∃f ∈ H such that f /∈ G, then we would have found d+ 1 distinct roots of p(x), a
contradiction.

Example 6.9 (Fall 2015, # 4). Justify the following completely:

(a) Give an example of a degree-6 Galois extension F/Q with a non-abelian Galois group.

(b) Give an example of a degree-6 Galois extension K/Q with an abelian Galois group.

Proof. For (a): Let F be the splitting field of f(x) = x3 − 2. Since f is irreducible (by Eisenstein,
for example) the extension F/Q is Galois and has degree at most 3 · 2 = 6 over Q. Letting α := 3

√
2

denote the real cube root of 2, we see that Q(α) ⊂ F , but that this inclusion is not an equality because
Q(α) ⊂ R where F * R. Hence we must have that [F : Q] = 6. We also know that since deg(f) = 3,
the Galois group at hand is a subgroup of S3, so it must in fact be isomorphic to all of S3, which is not
abelian.

For (b): We consider the cyclotomic field K = Q(ζ7) where ζ7 := e2πı/7 is a primitive 7th root of
unity. Then K/Q is a cyclotomic extension which is Galois with cyclic Galois group (Z/7Z)× ∼= Z/6Z.
Cyclic groups are abelian so we have produced the desired example.

Example 6.10 (Spring 2016, # 1). Let F = Q(
√

2,
√

3). List all intermediate fields K such that
Q ⊂ K ⊂ F , and find all elements α ∈ F such that F = Q(α).

Proof. The field F = Q(
√

2,
√

3) is the splitting field of (x2 − 2)(x2 − 3) and so is a Galois extension
over Q. Let G := Gal(F/Q) and notice that the automorphisms σ̂ ∈ G are determined by their actions
permuting the leading sign of the generators

√
2→ ±

√
2 and

√
3→ ±

√
3. Let σ, τ ∈ G be defined by

σ(
√

2) = −
√

2 and τ(
√

3) = −
√

3, i.e., so that σ(a+ b
√

2 + c
√

3 + d
√

6) 7→ a− b
√

2 + c
√

3− d
√

6 and
τ(a+ b

√
2 + c

√
3 + d

√
6) 7→ a+ b

√
2− c

√
3− d

√
6. Then we can see that στ(a+ b

√
2 + c

√
3 + d

√
6) 7→
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a−b
√

2−c
√

3+d
√

6, so that στ 6= σ, τ , but where σ2 = τ 2 = (στ)2 = 1. So G = {1, σ, τ, στ} ∼= Z2×Z2 is
the Klein 4-group. By the fundamental theorem of Galois theory, the subfields K such that Q ⊂ K ⊂ F
are in bijective correspondence with the fixed fields of the distinct subgroups of G. For the sake of
completion we can list them. In summary, these K are given by Q(β) for β =

√
2,
√

3,
√

6.

Now for the second part of the question. A basis for F over Q is given by {1,
√

2,
√

3,
√

6} so
that every element of F is of the form α := a + b

√
2 + c

√
3 + d

√
6 for some a, b, c, d ∈ Q. By order

considerations on the degrees of the minimal polynomials of the elements α of these forms, we have
that F = Q(α) precisely when α is not strictly contained in any of the subfields K from above. This
happens when at least two of the b, c, d coefficients are non-zero.

Example 6.11 (Fall 2016, # 2). Let R be an integral domain containing a field F . Show that if R
has finite dimension as a vector space over F , then R is a field.

Proof. Since R is an integral domain, we just need to show that every non-zero r ∈ R has a multiplica-
tive inverse. Fix this r 6= 0 and consider the ring homomorphism φ : F [x]→ R that is the identity on
F and maps x 7→ r. Since [R : F ] = n < ∞ is finite dimensional, it follows that Ker(φ) 6= {1} has a
non-trivial kernel. We also know that Ker(φ) is a prime ideal in F [x]. Then F a field =⇒ F [x] is a
PID, so that F [x]/Ker(φ) is a field. This implies that x has an inverse in this quotient field. By the
first isomorphism theorem for rings, Im(φ) ∼= F [x]/Ker(φ), therefore r has an inverse in R.

Example 6.12 (Fall 2016, # 4). Let K/F be a Galois extension whose Galois group is the symmetric
group S3. Is it true that K is the splitting field of an irreducible cubic polynomial over F?

Proof. The answer is YES. We now need to be more rigorous and prove our claim. Suppose that L
is the fixed field of the transposition (12) ∈ S3. Then [L : F ] = 3, and since L is a subfield of a
separable extension, L is a separable extension of F . It follows that there is a primitive α ∈ L such
that L = F (α). Let g(x) denote the minimal polynomial of α. We claim that K is the splitting field
for g over F .

To see this, notice that since K/F is a Galois extension, the conjugates of α are contained in K.
So if S is the splitting field for g over F , then S ⊆ K. Now by construction, S ⊇ L. Then since
[L : F ] = 3 and [K : F ] = 6 and the dimension of any sub-extension of K divides 6, it must be the case
that S is a degree-3 extension or a degree-6 extension, In the former case, S = L and in the latter case
S = K. We pull a clever observation out of the solutions to notice that (13)L is the fixed field of the
permutation (13)(12)(13)−1 = (32). So by the fundamental theorem of Galois theory, (13)L 6= L – and
hence L cannot be a Galois extension of F . Then L is not the splitting field of g over F which leaves
us with S = K.

34



7 MORE PRACTICE PROBLEMS
FROM PAST EXAMS

7.1 Problems specific to modules

An introduction to modules is given in Chapter 10 of Dummit and Foote.

We see importantly that Z-modules are essentially the same as abelian groups. Note that we have
an analogous sub-module criterion: N is a submodule if x + ry ∈ N for all r ∈ R and x, y ∈ N .
Representative problems from past comprehensive exams include the following samples:

Example 7.1 (Spring 2018, #8). A R-module M is called irreducible of M 6= 0 and the only sub-
modules of M are 0 and M . Now suppose that R is a commutative ring with 1 and that M is a left
R-module. Show that M is irreducible if and only if M is isomorphic to R/I for a maximal ideal I of
R.

Example 7.2 (Spring 2017, #5). Give an example of a module M over Z[x] which is torsionfree (for
all f ∈ Z[x] and m ∈M , f ·m = 0 implies f = 0 or m = 0), but not free.

Example 7.3 (Spring 2016, #6). A R-module M is called faithful if rM = 0 for r ∈ R implies r = 0.
Let M be a finitely generated faithful R-module and let J be an ideal of R such that JM = M . Prove
that J = R. (HINT: Adj(A) · A = det(A) · I.)

Example 7.4 (Fall 2015, #8). Let R be a commutative ring and let f(X) =
∑d

i=0 ciX
i be a nilpotent

univariate polynomial with coefficients ci ∈ R. Show that the coefficients ci are also nilpotent.

Example 7.5 (Fall 2016, #3). Let R be an integral domain. Suppose r is a non-zero, non-unit,
irreducible element of R, and let 〈r〉 denote the ideal generared by r.

(a) If R is a UFD, is R/〈r〉 also a UFD?

(b) If R is a PID, is R/〈r〉 also a PID?

Example 7.6 (Spring 2016, #5). Is the ring Z[2ı], where (2ı)2 = −4, a principal ideal domain? If not,
give an example of a non-principal ideal.
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Example 7.7 (Fall 2017, #7). Let R := Q[x, y]. Is R an Euclidean domain? Is R a unique factorization
domain?

Example 7.8 (Spring 2011, #5). Suppose L/K is an algebraic field extension, and that R is a subring
of L containing K. Prove that R is a field.

7.2 Fall 2017 exam problems

(2) Find a factorization of f(x) = 6x4 − 4x3 + 24x2 − 4x− 8 into prime elements of Z[x].

(3) Let A and B be finitely generated abelian groups such that A × A ∼= B × B. Prove that
A ∼= B.

(4) Find all primitive elements in the field extension Q(
√

2,
√

3)/Q. Justify the answers.

(6) Let p be prime and let G be any p-subgroup of GLn(Fp). Prove that there is a non-zero vector
v ∈ Fnp such that gv = v for all g ∈ G with respect to the natural action of GLn(Fp) on Fnp .
(Group actions question).

(8) Show that f(x) = x3− 3x− 1 is an irreducible element of Z[x]. Compute the Galois group of
the splitting field of f over Q and over R.

7.3 Spring 2017 exam problems

(2) Consider the polynomial f(x) = x23−1
x−1

=
∑22

n=0 x
n, Determine the number of irreducible factors

of f(x) over each of the following fields: (a) Q; (b) F2; and (c) F2048.

(6) Find the Galois group of the splitting field of the polynomial f(x) = x3 − x + 1 over each of

the following fields: (a) F2; (b) R; (c) Q.

7.4 Spring 2016 exam problems

(2) Show that two commuting complex square matrices share an eigenvector, without using the
result that they are simultaneously triangularizable.

(4) Let G be a finite group and let H ≤ G be a proper subgroup. Prove that the union of all
conjugates of H is a proper subset of G. Show that the conclusion need not be true if G is
infinite. (Group actions problem)

7.5 Spring 2015 exam problems

(1) (a) Prove that the polynomial f(x) = x6 + x3 + 1 = (x9 − 1)/(x3 − 1) is irreducible over Q;

(b) Find the factorization of f(x) over F19.

(3) Let K be the splitting field over Q for an irreducible polynomial of degree 3. What are the
possibilities for [K : Q]? Give an example to show that each possibility does occur.

(7) (a) If n is prime and F (x) is an irreducible polynomial over Q of degree n, prove that the
Galois group of F over Q contains an n-cycle. (b) If n is not prime, show that the Galois
group in part (a) need not contain an n-cycle. [HINT: Consider the cyclotomic polynomial
Φ8(x)]
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7.6 Problems from other previous exams

Example 7.9 (Fall 2014, #4). Let V be a finite-dimensional complex vector space. A linear operator
T : V → V is called nilpotent if Tm = 0 for some m ∈ Z+. Show that if T is nilpotent, then T n = 0,
where n is the dimension of V .

Example 7.10 (Spring 2014, #2). Let GLn(Q) denote the group of invertible matrices with entries
in the rational numbers. Let p be a prime satisfying p > n + 1. Show that if A ∈ GLn(Q) satisfies
Ap = I, then A = I.

Example 7.11 (Fall 2012, #1). Over a field of characteristic 0, prove that you cannot find two matrices
A,B such that AB −BA = I. Show that the statement is false in a field of characteristic 2.

Example 7.12 (Spring 2011, #4). Let R be a local ring, i.e., a commutative ring with identity having
a unique maximal ideal M . Let A be a 2 × 2 matrix with coefficients in M . Show that the matrix
B = A+ I is invertible over R.
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