You must hand in this homework. Please work alone on this assignment. As always, please show your work.

1. Problem 3.2 from [DPV]
2. Problem 3.3 from [DPV]
3. Problem 3.4 from [DPV]
4. Problem 3.12 from [DPV]

5. Global sink:
 Let $G = (V, E)$ be a directed graph given its adjacency list representation. A vertex v is called a global sink if and only if:

 (a) v has no outgoing edges
 (b) for every other vertex w, there is a path from w to v.

 Give an algorithm that determines if G has a global sink and, if the answer is yes, returns the global sink. Your algorithm should have running time $O(|V| + |E|)$.

6. Binary heap:
 Starting from an empty binary heap, perform the following sequence of operations, and draw the final binary heap data structure.

 • Insert a; 7 (that is, an element a with key 7).
 • Insert b; 4.
 • Insert c; 9.
 • Insert d; 12.
 • Insert e; 10.
 • Insert f; 3.
 • Decrease-key of e to 2.
 • Delete-min.

7. Problem 4.19 from [DPV]
8. Problem 4.21 from [DPV]