CS 1050 - Proofs Homework 10 Assigned Sunday, November 7 Due <u>Thursday</u>, November 11

1. Let f(n) = n for all $n \ge 1$ and let $g(n) = n^2$ if $n \ge 1$ and n is even and g(n) = 1 if $n \ge 1$ and n is odd.

Prove that f is not O(g). (Warning: you cannot use a limit. Why?)

- 2. a) Prove that if f(n) = n! and $g(n) = 3^n$, then f is not O(g).
- b) Is g = O(f)? Prove your answer.
- 3. Prove the following theorem.

Theorem 1 Let α, β be any two real numbers such that $\alpha \leq \beta$. Now define two functions $f, g : \mathbb{Z}^+ \to \mathbb{R}$ by $f(n) = n^{\alpha}$ for all $n \geq 1$ and $g(n) = n^{\beta}$ for all $n \geq 1$. Then f = O(g).

4. Let $f(n) = 4^n$ for all $n \ge 1$. Let $g(n) = 2^n$ for all $n \ge 1$. Using a limit, prove that f is not O(g).

5. Let $f(n) = n \log_2 n$ for all $n \ge 1$. Let g(n) = n for all $n \ge 1$. Use a limit to prove that f is not O(g). (Notice that the log is base 2.)

6. a) Let $f(n) = \log_2^3(n)$ and let $g(n) = \log_e n^3$. Is f = O(g)? Prove your answer.

b) Now suppose that $h(n) = \log_2 n$ and $g(n) = \log_e n^3$ as before. Is h = O(g)? Is g = O(h)? Prove both your answers.