## CS 1050 - Proofs

## Homework 10

## Assigned Sunday, November 7

## Due Thursday, November 11

1. Let $f(n)=n$ for all $n \geq 1$ and let $g(n)=n^{2}$ if $n \geq 1$ and $n$ is even and $g(n)=1$ if $n \geq 1$ and $n$ is odd.

Prove that $f$ is not $O(g)$. (Warning: you cannot use a limit. Why?)
2. a) Prove that if $f(n)=n$ ! and $g(n)=3^{n}$, then $f$ is not $O(g)$.
b) Is $g=O(f)$ ? Prove your answer.
3. Prove the following theorem.

Theorem 1 Let $\alpha, \beta$ be any two real numbers such taht $\alpha \leq \beta$. Now define two functions $f, g: \mathbb{Z}^{+} \rightarrow \mathbb{R}$ by $f(n)=n^{\alpha}$ for all $n \geq 1$ and $g(n)=n^{\beta}$ for all $n \geq 1$. Then $f=O(g)$.
4. Let $f(n)=4^{n}$ for all $n \geq 1$. Let $g(n)=2^{n}$ for all $n \geq 1$. Using a limit, prove that $f$ is not $O(g)$.
5. Let $f(n)=n \log _{2} n$ for all $n \geq 1$. Let $g(n)=n$ for all $n \geq 1$. Use a limit to prove that $f$ is not $O(g)$. (Notice that the $\log$ is base 2.)
6. a) Let $f(n)=\log _{2}^{3}(n)$ and let $g(n)=\log _{e} n^{3}$. Is $f=O(g)$ ? Prove your answer.
b) Now suppose that $h(n)=\log _{2} n$ and $g(n)=\log _{e} n^{3}$ as before. Is $h=O(g)$ ? Is $g=O(h)$ ? Prove both your answers.

