CS 1050 - Proofs

Homework 11

Assigned Saturday, November 13
 Due Thursday, November 18

1. a) Prove that if d is a divisor of both a and b, then d is a divisor of $a-b$.
b) Now use that lemma to prove the following theorem

Theorem 1 If $\operatorname{gcd}(x, m)>1$ then x has no multiplicative inverse mod m.
2. Using Euclid's algorithm, find the gcd of
a) 1,575 and 231
b) 100,996 and 20,048
3. Use the extended-gcd algorithm to find a, b and d so that $d=\operatorname{gcd}(42,98)$ and $d=$ $a \cdot 42+b \cdot 98$. Show the steps involved.
4. For all integers n between 5 and 9 , and for all integers a such that $1 \leq a \leq n$, calculate $a^{n-1}(\bmod n)$. What do you find? Which answers were predicted by Fermat's little theorem?
5. a) Prove that $a^{\log _{a} x}=x$.
b) Prove that $\sqrt{2}^{\log _{2} n}=n^{\frac{1}{2}}$.
c) Prove that $4^{\log _{2} n}=n^{2}$.
d) Prove that $2^{\log _{2}^{2} n}=n^{\log _{2} n}$. (Recall that $\log _{2}^{2} n=\left(\log _{2} n\right)^{2}$.)
e) Prove that $\log _{2}^{2} n=O\left(\log _{e}^{2} n\right)$.

