CS 1050-Proofs
 Homework 3
 Assigned September2
 Due Thursday, September 9

1. Let $f: S \rightarrow T$ and $g: T \rightarrow U$ be two functions such that $g \circ f$ is one-to-one. Prove that f is one-to-one. Give an example for which $g \circ f$ is one-to-one but g is not one-to-one.
2. Let $f: S \rightarrow T$ and $g: T \rightarrow U$ be two functions such that $g \circ f$ is onto U. Prove that g is onto U. Give an example for which $g \circ f$ is onto U but f is not onto T.
3.a) Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ by $f\left(x_{1}, x_{2}\right)=\left(2 x_{1}+x_{2}, 3 x_{1}-x_{2}, 2 x_{1}+x_{2}\right)$ for all reals x_{1}, x_{2}.

Prove that f is one-to-one.
b) For the function given in part (a), disprove the following conjecture:

Conjecture $1 f$ is onto.
4. Show thhe following theorems:
a) If $A \cup B \subseteq A \cap B$ then $A=B$.
b) $(A \cap \emptyset) \cup B=B$.
5. a) We know that

Theorem 1 If A, B are subsets of a universe U, then $(A \cup B)^{c}=A^{c} \cap B^{c}$.
Use this fact to prove the following theorem:
Theorem 2 If A, B, C are subsets of U, then $(A \cup B \cup C)^{c}=A^{c} \cap B^{c} \cap C^{c}$.

Do not prove Theorem 2 by taking an arbitrary element x of the left-hand side, and showing it is in the RHS, and then showing that an arbitrary element y of the RHS is in the LHS. Do it by cleverly applying Theorem 1.

